Getting Transit (Mostly) Right: Minneapolis-Saint Paul edition

Minneapolis and Saint Paul do not necessarily lend themselves to being a transit paradise. The core of the region is not particularly dense, and wide roads and a mostly-built freeway system make driving too easy. The tree-lined avenues of Minneapolis and Saint Paul are mostly lined by single-family homes and duplexes with sizable yards and alleyways, meaning that population densities are far less than the three-deckers of Boston, side-by-side bungalows of Chicago and row houses of DC, so there are fewer people to provide the necessary patronage for a dense network of frequent transit lines. The factors that push people to transit that define the urban experience in a Boston, New York or DC—heavy congestion and high parking costs—are, if not completely absent, less of an issue. And without many grade-separated lines, there are few cases where transit has a distinct time advantage over rush hour traffic.

Additionally, much of the area is pockmarked by both active and abandoned industry and transportation networks, further diluting the population (while, at the same time, providing significant potential for brownfield redevelopment). Most in-city residents live within a short walk of a bus line (the suburbs, for the most part, are less dense and even more car-dependent), but frequencies are often only every 20 or 30 minutes. Since the demise of the streetcar network (most car lines ran every 10 or 12 minutes or better, and streetcar ridership peaked at 238 million per year, triple transit ridership today) and the rise of the highways in the 1950s and 1960s, driving has just been to easy to compete with transit. Even at its peak, Minneapolis had just under 10,000 people per square mile, Saint Paul only 6,000; neither reached the peak density of large rust belt cities further east. (Both cities saw their populations bottom out in 1990 and have gained about 10% since.)

Minneapolis-Saint Paul was one of the largest cities without rail transit until its first line opened in 2004—a 12 mile line for a cost, in current dollars, $905 million (including two major elevated overpasses and a mile-long tunnel under the airport, despite exceeding initial estimates it is, in retrospect, quite cheap.)—and the second corridor, linking Minneapolis and Saint Paul, came online in 2014. These two corridors have, in their own right, made Minneapolis’s “Metro” the most heavily-used rail system to have been inaugurated since 2000 (since surpassed by Seattle’s Link, which is experiencing overcrowding with its recent extension), with more than 60,000 passengers per day. But there are two new smaller-scale developments which show that the Twin Cities are more forward-thinking in providing transit, and may well entice passengers out of cars while providing transit along corridors with high potential for redevelopment.

The first is the speeding up of the Green Line (formerly the Central Corridor) between Minneapolis and Saint Paul. When it first opened, the signal system of the line was not optimized for transit: trains often waited at cross streets for vehicular traffic despite the promise of transit signal priority. While the line is not perfected in the way that the Blue Line, which has gated, at-speed grade crossings, operates (and, running in the center of a city street, it likely never will be) the kinks are being worked out, and the promise of a 39-minute downtown-to-downtown ride is coming to fruition (the downtown sections are still quite slow and trains have minimal signal priority there). Speeds have also been improved, to 40 mph between most stations and 50 where there are no cross streets for long distances. (Note that this center-running light rail line runs faster than any MBTA subway or light rail service.) Further progress may be made, but the cities have not kowtowed to a few delayed drivers, and reaped both the operational efficiencies of running trains faster, as well as the potential for higher ridership. Trains run just every ten minutes, but with three 100-foot-long railcars, they have a capacity of more than 500 passengers each.

The second is the upcoming A Line bus rapid transit route in (mostly) Saint Paul. While not true BRT—there are few, if any, protected lanes, and the efficacy of transit signal priority will have to be tested—it’s the right steps towards getting more riders on to buses, and then on to trains beyond. The 84 has long been an important crosstown route running north-south between Minneapolis and Saint Paul. It connects the Green Line at Snelling Avenue with the Blue Line at 46th Street in Minneapolis, and with the rail lines has acted as a major feeder route to the two lines, albeit an urban bus route with frequent stops, often picking up just one or two passengers at each due to the density of the area, slowing down the route.

The new A Line will eliminate the Montreal joggle, a vestige
from the pre-light rail routing of the line.

Beyond this, it has had its share of issues. It has long been a frequent route—every fifteen minutes for the trunk service—but service was downgraded in 2004 when the direct trip to the airport and Mall of America was severed and required a transfer to the Blue Line. Additionally, until recently, only every other trip made the airport run, meaning service to the rail line was only available every 30 minutes, a major transfer penalty, especially changing from rail to bus. The other branch of the route dead-ended at the 54 bus, which also ran to the airport, but with less frequency (every 15 minutes) and without the passenger amenities at the transfer point. Furthermore, the line had several twists and turns. Before 2004, it made several jogs through Saint Paul en route to the airport. In the past decade, most buses serving the light rail have detoured half a mile south of the straight east-west route to the rail transfer station, providing some additional coverage but adding several minutes of extra travel time to each trip. When there are few advantages to bus travel in the first place, once a route goes out of its way in this manner, driving becomes even more logical.

No joggles! The new A Line will follow
the city street grid: the most direct route.

The new A Line BRT route will eliminate many of the factors which make driving more desirable in this corridor. First, stops will be consolidated, from eight or ten per mile to two or three, mostly at major nodes, bus transfers and “100% corners” which developed around these streetcar transfer points in the first half of the 20th century (the term has since been applied to highway interchanges in suburbia and transit transfer stations downtown). Each stop will be more developed, with heftier shelters with heating elements (important in Minnesota winters) and real-time departure information (important for everyone, but especially choice riders). Each station will have a fare machine and provide off-board fare collection, distinct vehicles with wider doors, and all-door, level boarding to minimize dwell times. Furthermore, buses will stop in the right travel lane, at a curb bump-out, so buses will not waste time pulling in and out of travel lanes. This will all enhance the speed of the route and the customer experience, and an analysis shows that it will bring many jobs closer to residents of the corridor.

Frequency will increase as well, with 10 minute headways matching headways of the light rail lines (frequency had been increased in 2014 to this level when the Blue Line opened, but not all buses ran to the Blue Line in Minneapolis), so transfers between the two lines will be minimal. Very importantly, these won’t just be rush-hour frequencies, but for midday service seven days per week (shoulder periods—before 6 a.m. weekdays, slightly later on weekends, and after 7:30 p.m. on weekdays and slightly later on weekends—will be somewhat less frequent, but still generally every 15 or 20 minutes). And the hodgepodge of coverage-based joggles will be eliminated: an every-half-hour 84 route will provide this coverage service, but the every-ten-minutes A Line will follow the grid to a T—or, as it happens, a backwards “L”—taking the most direct route possible. (The 84 will also provide service every block along Snelling Avenue, continuing a fallacy among many transit agencies that stops can not be consolidated at any cost. Thus some operational efficiencies will be lost by having empty buses running along the route, as nearly all passengers will opt for the faster and more frequent A Line. Even with stations every half mile along the Blue Line, MetroTransit still runs the 16 bus along the route, making these frequent stops. Based on limited observations, there are few, if any, riders, and it may behoove the agency to take whatever constituent hits are involved in putting this type of service out of its misery.)

New stations feature curb bump-outs so buses
board in regular traffic lanes.

Is it perfect? Certainly not. Buses will still be susceptible to congestion, especially in the crowded Midway area, where exclusive bus lanes may be a future improvement. But it’s a major improvement, and for (relatively) minor dollars. Rather than a showy BRT or rail system (the corridor is probably not dense enough for rail, and doesn’t have the traffic issues that would require a full-on, expensive BRT system) the new A Line seems to address the most salient issues with a cost-benefit analysis, with low-cost, high-impact solutions (what they call Arterial BRT). It can also be incremental; if it’s successful, it will give the political capital to make further improvements, which may mean taking car travel lanes or parking spaces for queue jump lanes of exclusive bus facilities. It will leverage the much-improved Green Line light rail connecting to the downtowns with a better connection from the Snelling corridor, and the Blue Line at the other end. This system did not have free-falling ridership that would require a Houston-level redesign (bus ridership has grown in recent years, even as a major corridor—University Avenue—was replaced by light rail), but certain corridors—like the 84—did need improvement (others still do). This is a model which should be used for other high-use corridors in the Twin Cities (which is planned), and other systems in the US as well.

I started riding the 84 in 2002 (it still carried a note that it had been renamed from the Saint Paul 4—until 2000 Minneapolis and Saint Paul parochially had duplicate route numbers in different cities, like boroughs in New York) as a first year student at Macalester College, frequently to and from the airport. It ran every half hour, but with direct service it made the terminal impressively close: even with the joggles in the route, it was less than a 20 minute ride, door-to-door. The actually service degraded in 2004 with the rail transfer: it usually took about 30 or even 35 minutes, especially with the extra trip down to Montreal Avenue, and still only every half hour.

It took ten years, but a sensible route has finally been worked out. While the new service won’t match the speed of the pre-2004 service, with a more direct route, fewer stops and 10 minute headways for both the bus and the light rail, the trip, even with a transfer, should take about 25 minutes (with a perfect transfer at non-peak times, it may actually beat the circa-2004 20-minute mark), with the bus running up to 25% faster. Considering it will come three times as often, it will (finally) take full advantage of the light rail, and provide better service to the Snelling corridor in Saint Paul. Hopefully residents will notice the improvements and avail themselves of better transit options, even if it’s never perfectly competitive with an automobile.

Update: so far people are mostly happy with it, with one curmudgeon who won’t walk the extra block to a stop in the winter, supposedly. Update 2: Ridership on the corridor is up 25%.

How much does BRT cost? 7X less than LRT? (Hint: No.)

This is the third in a series about the ITDP bus rapid transit report for Boston, and the ITDP standard in general.

One of the claims often made by BRT propagandists is that constructing bus rapid transit is seven times cheaper than light rail transit.

This is from the executive summary of the ITDP’s Boston BRT report:

Analysis of recent transit development costs
in the United States suggests that implementing BRT in these
corridors would also be more cost-effective than other options
for improving the existing transportation system. Based on this
evidence, on average, BRT can be seven times more affordable
per mile implemented than light rail.

Their “Benefits of BRT” page repeats this factoid several times. Quite a ways down the page do they use some properly weasely language to qualify their statement: “BRT can on average be up to seven times more affordable than light rail.” (Italics mine.) Hey, guys? That’s now how averages work. An average is the sum of a set of numbers, divided by the total number in the set. It’s like saying “In February, Boston gets, on average, up to 65 inches of snow.” Boston must be a snowy place, a reader would say, since some there must be a lot of years that have more snow than that. Except “up to” denotes an outlier. Boston normally gets, in average, about 12 inches of snow in February. 65 inches is an outlier. The ITDP report is off by about the same factor.

If this seven-times-as-expensive figure were the case—especially in corridors where demand is not likely to exceed 2500 passengers per hour—then it would make a lot of sense to build, right? If you can get 25 miles of BRT for the price of four miles of light rail, it’s a no-brainer. But what about if you can get nine miles of BRT for the price of four miles of light rail? Because that’s the actual ratio: light rail comes in at slightly more than twice the cost. And the while the ITDP bandies about that number, they cite no actual evidence to back it up.

Given the capacity constraints of bus rapid transit, it becomes a harder choice: if you spend half the cost of light rail on a bus system that doesn’t have the capacity to serve the needs of the corridor, it’s wasted money. It becomes a sort of Yogi Berra white elephant: no one goes there anymore, it’s too crowded. Crowds seem like success, and they are, to a point. But overcrowded transit runs more slowly and is more prone to uneven headways. In other words, if you build it, and they come, then what?

* Planned for ~2020. Ridership includes 38, 38R, 38AX, 38BX
† Included significant grade separation/bridges/tunneling
‡ Primarily in an existing right-of-way
All dollar figures adjusted for inflation (2015)

I like charts (you’ll know that if you’re a frequent reader) and here is one. It shows the costs per mile, and daily ridership, for a variety of BRT and LRT projects which have been built recently. I included several Los Angeles LRT examples because it is the only city which has built both BRT (to the level of an ITDP standard) and LRT in that time, and included the much older (relatively) Blue Line because it was mostly built on an old Pacific Electric right-of-way, much like the BRT Orange Line. Is light rail more expensive to construct than bus rapid transit? Yes. Is it seven times more expensive? Certainly not. The distance-weighted average construction cost for light rail is about 225% higher than BRT, less than a third of the difference that the ITDP suggests. (I’ve left out rail examples here—the Central Link in Seattle, for example—which include significant tunneling or grade separation, and similar BRT systems.)

There is only one example of BRT construction which is seven times less expensive than any similar light rail line: the Emerald Express in Eugene, Oregon.

Eugene, Oregon The Emerald Express was cheap to build: but you get what you pay for. The line serves a transit system which has a daily ridership of 40,000; fewer than most of the light rail lines above. It runs every ten minutes—frequent by the standards of a small town—but will require significant more investment to go any faster. Why? Because many of its exclusive lanes are bidirectional: a bus may have to wait for a vehicle going the other way to clear. It’s like a single-track railroad with passing loops for buses. And the stations are not what you’d see in Bogota: here is one along a less populated stretch of the route. This is not to say that there’s anything wrong with the Emerald Express—it is good for the community it serves. But that type of infrastructure would be overwhelmed on opening day in Boston.

Oh, also: the second leg of the Emerald Express—with similar BRT features—is coming in a bit higher: $19 million per mile. So the one-seventh number? It’s pretty selective.

Los Angeles Then there’s the Orange Line in LA. It is certainly successful, relative to an unused corridor, anyway. It runs every four minutes and carries 30,000 passengers per day. It’s basically at capacity. It cost $27 million per mile to build initially (but the recent extension was more than $50 million per mile), and has a third the capacity of the Blue Line, built in a similar corridor. It wasn’t built as light rail because, well, it’s along story that includes Orthodox Jews and corrupt politicians. You can’t make this up. Since it’s over capacity, there are initial plans to improve capacity (costing another $20 million per mile) or convert it to rail ($65 to $95 per mile).

The cost for a bus line that will perform anywhere near the level of a rail line will wind up being just about as high, and will still have a much lower capacity—certainly nowhere near the 90,000 passengers the Blue Line carries. Of course, there’s a sunk cost issue. Having already spent $600 million on a busway, there’s an argument not to “throw this money away”. But the total cost for the busway could come to $1 billion by the time all is said and done, about what light rail would have cost in the first place, with a lower overall capacity. So the BRT is really a white elephant, even if it’s one that transports a lot of people. This is a perfect illustration of the problem I posited above: you spend a lot of money on a project and quickly it is overburdened.

Cleveland Perhaps the best example of a successful BRT line in the US is the HealthLine. It was built along six miles of Euclid Avenue from downtown east towards a university/hospital cluster (including, yes, the eponymous Cleveland Clinic, and Case Western, too). It carries about 14,000 passengers per day, and does so in a well-designed corridor (the only one in the US to qualify as Silver based on the ITDP’s standards). The corridor varies between about 70 and 90 feed wide. The cost? $30 million per mile. It was probably a good investment. There is a roughly parallel heavy rail line that makes the end-to-end trip faster, so there’s never likely to be very heavy corridor ridership, and it likely won’t have to scale beyond it’s single-lane capacity. Of course, this rail line has plenty of capacity (it is by far most lightly used metro system in the country) between the HealthLine’s endpoints, so there is a valid question as to whether these investments were necessary.

BRT boosters (ITDP) point out that the HealthLine has been the $5.8 billion of development which has taken place along the line. (Well, other sources put the number in the $4 billion range; it’s a big number.) Which is great. But two important caveats. First: correlation does not imply causation. Much of this development was planned out well before the line was built. Much of it likely would have taken place if no improvements had been made. It’s not like the Cleveland Clinic (with 1500 beds and $9 billion in annual revenue) waited for the bus line out front to be built. Or that Case Western—with a $2 billion endowment—didn’t spend any of it until the HealthLine was completed.

The comments by Coolebra in this article flesh this out very well, as does this article. As one commenter there quips:

I could probably go put a giraffe near the Cleveland Clinic, and surely the Clinic will build another building within the next 24 months (or two). I can publish a study showing that giraffe investment is the best way spur development as cities run around to put giraffes across their neighborhoods.

The point being: there are a variety of factors which account for the return on investment for any transit line. Crediting all of it to a single source is folly. And let’s all say it together: correlation does not imply causation!

Second: most of the improvements have taken place on the eastern end of the line. This happens to be where it mostly parallels the aforementioned Red Line rail line. Saying that all of the development in the area occurred because of the HealthLine would be like ascribing all of the development between Dudley Square and the Financial District in Boston to the Silver Line. It helps, but there are a couple other factors—and rail lines—involved.

So there’s nothing wrong with the HealthLine, per se. It is a decent investment and has room to grow. But there needs to be a bit more nuance in analyzing it’s ability to leverage private investment than claiming that anything built within a stone’s throw—a college campus and two major hospitals—is only there because of the BRT. (In fact, they’re there because of transit—originally, Euclid Avenue had a streetcar, of course.)

Hartford Very recently-opened is CTFastrak in between Hartford and New Britain. Like the HealthLine, it probably doesn’t have the capacity needs for a rail line, and there’s no existing light rail infrastructure in Hartford to build upon. It’s reasonably fast, mostly grade-separated, and serves both buses along the line and others that enter the line part way along it. (It’s brand new, but has been getting good reviews.) Of course, it cost $60 million per mile to build, which is comparable to most new light rail lines. It will probably score well when the ITDP comes to town (separate platforms, some passing lanes, etc) and they’ll probably gloss over the fact that it cost as much as a couple of sets of railroad tracks.

It might be a good time to point out another hidden BRT cost: maintenance facilities. Light rail costs almost always include the operating fleet as well as the cost of maintenance facilities. Most BRT systems makes use of existing maintenance infrastructure, at least to start, which reduces costs in the short run but in the long run will require more or larger garages to be built down the road, especially if the line is successful (the cost of the vehicles is usually included in the cost of the system). I don’t believe BRT costs have future maintenance facility requirements amortized in to their figures. Since these are likely shared with other bus operations, the costs won’t be factored in to the cost of the system. Such facilities can cost more than half a million dollars per bus, adding a million dollars per mile in costs for frequent systems.

San Francisco And then there’s Geary, one of the busiest bus lines in the country. It has more than 50,000 daily passengers spread out among four routes, the 38, the 38R (a limited stop route) and two rush-hour express routes, the 38AX and 38BX, which serve an outer portion of the line before using other streets to access downtown San Francisco. In a sense, these already function as a local-express BRT network, just without the bus lanes, stations and other amenities the ITDP looks for. So basically BRT, without the R. Do they function well? Hard to say. People seem to like the limited and express options (I mapped their Yelp scores a few years back) although at rush hour the 38R, which comes every four minutes, is at or near capacity (running 60 foot buses).

The city is planning to build BRT and have it “light rail ready” because they don’t have the money for light rail. The problem is that this is going to have the capacity issues that the Orange Line has in Los Angeles on day one. Yes, better platforms, signal priority and wider doors may help, but the system already carries more than 3,000 passengers per hour, so it won’t have the capacity in a two lane system. Much of it is being built as side lanes instead of in a center median, especially in the inner part of the route, so limited buses will be able to pass locals in mixed traffic lanes. But it won’t really solve the capacity crunch, especially if there’s traffic in those lanes.

There are two ways to add enough capacity on Geary. One would be to build light rail. A three-car light rail train every five minutes would carry 6000 people per hour and not be at capacity. The second would be to build a full-on four-lane Bogotá-style BRT system. The corridor already has local, limited and express buses: at rush hour, there are nearly 60 buses per hour serving the corridor. This would allow buses with different service patterns to skip stops easily, and as we’ve said before, a multi-lane system does have capacity that will match light rail.

There are only two issues. The first is that even the half-baked BRT system will cost $50 million per mile (and run in to the same white elephant/sunk cost issue as LA has). A four-lane system would likely cost more, getting in to the range of the average light rail system. The second is that while there is enough space on the street for this type of system, there’s not much to spare. Geary is about 100 feet wide—one of the widest streets in San Francisco—but it is still narrow compared to most streets in Bogotá. Since most highways in the City were never built (or removed) and these few rider surface streets, it functions as a thoroughfare, as well as a shopping street. So to take four lanes plus stops for a busway would leave only 35 feet or so on each side, barely enough for one lane and parking. This likely wouldn’t fly, so you get single-lane BRT: pretty expensive, but minimal improvement to capacity. The B-Geary was one of the last lines in San Francisco to lose streetcar service, and the only way to keep enough of the road for cars and have enough transit throughput is a light rail line, even if it would cost more. BRT is, to quote Sarah Palin, lipstick on a pig.

Minneapolis-Saint Paul There are several light rail lines which have been built as well; for some of them there was a conscious choice made between bus and rail transit. The Green Line between Minneapolis and Saint Paul is one. When it was proposed, bus rapid transit would have cost about a third of the cost of rail. But it’s unlikely that it would have been able to handle the passenger loads that the rail line carries, especially since it serves both the University of Minnesota (with 50,000 students, one of the largest in the country) and both downtown Minneapolis and Saint Paul (Minneapolis being the larger traffic generator). The line already carries 35,000 passengers daily—more than the ten-year-old Blue Line (which was built along an already-cleared but never-built freeway right-of-way)—a year in to service. With those riders, Minneapolis now has the highest ridership of any light rail system opened since 2000.

It also serves the Cities’ main sporting arenas (the ballpark, hockey, basketball and both football stadiums and the minor league ballpark; and yes, the Twin Cities may be the most over-stadiumed city in the country), so in addition to heavy loads at rush hours, it has to cope with frequent event traffic as well. If it were a bus rapid transit system, it would have been overloaded from the start. As a light rail line, it can cope with demand with 10 minute headways at all times (except overnight, and, yes, it runs 24 hours a day), which means it could easily double capacity—or more—if ridership increases.

Which is not to say that the Twin Cities don’t have any bus rapid transit. They have a couple of freeway-based lines (which don’t really conform to ITDP standards) and are planning several arterial lines, which may not have exclusive lanes but will have better stops, all-door boarding and more frequent service. One, on Snelling Avenue, intersects the light rail lines near both lines’ midpoints. While Snelling once had a streetcar, it probably wouldn’t merit one today, but it connects the two rail lines and will provide an important link in the region.

While the Twin Cities may be somewhat light rail-heavy in their planning, they are choosing appropriate modes for each corridor. They aren’t hamstringing heavily-used routes with inadequate BRT because it’s cheaper (or because buses are always better, or something) but aren’t spending on light rail where BRT will do the trick (the streetcar plans are another story, and how I feel about them—conflicted—is the topic of another post entirely). Rail cost more than twice as much as BRT would have (but certainly not seven times as much) on University Avenue. But it provides more utility than BRT on day one, with room to grow. It was a smart investment, and the right choice.

I’m more familiar with the Twin Cities than other regions, but imagine there are others which act similarly. But the ITDP wouldn’t give them the time of day and certainly doesn’t examine rail systems as “gold standard” or otherwise. Perhaps it’s time we took a more holistic approach towards analyzing transit investments—looking at ridership, throughput and actual costs, not hyperbole—rather than engaging in mode wars (the Transport Politic made just this point recently). Let’s choose the right mode for each corridor, not blindly push for one over another based on preconceived agendas.

The golden age of American railroading was in the Upper Midwest

In a factually-inaccurate-and-not-yet-corrected post, Michael Tomansky heard an anecdote (the Beatles made it from New York to DC in 2:15) and reported it as fact, claiming that it represented a golden age of American railroads which we will never see again. It most certainly is not: the GG1s the Pennsylvania Railroad rain in the 1960s were only capable of 100 mph as a top speed, and would have had to average 100 mph to get from New York to DC in that time (it’s quite nicely 225 miles in 2.25 hours). Scheduled times never fell below 3:30. 2:15? It didn’t happen. By the late ’60s, the Metroliners were running up to 125 mph on the corridor, with trains making stops clocking in at 3 hours and nonstops running in 2:30 once a day—it turns out it makes sense to stop in Philadelphia and Baltimore. Acela Express trains now make the trip in 2:45 making six stops; speed improvements could conceivably get this to 2:30, or to 2:15 non-stop (which is unlikely as intermediate stops cost only a few minutes and account for a lot of ridership).

But the fact of the matter is that before the Metroliners, there were very few trains that eclipsed 60 mph average speeds. Many streamliners of the ’40s and ’50s ran between 55 and 60, and a few, notably the Twentieth Century Limited and one of the Pennsylvania’s New York-DC runs, broke the 60 mph barrier. (The site linked has decent schedule information; easier than combing through the 1000-plus page Guide to the Railroads.)

The notable exception to this is not a single train, but a competitive market: from the late 1930s through the early 1960s, three separate railroads ran five trains per day between Chicago and Saint Paul at damn near—and in one case, over—70 miles per hour over a distance of over 400 miles, with several stops. (It was another half hour, after a long stop and at slower speeds, to the trains’ termini in Minneapolis.) In fact, for two decades between the beginning of World War II and the opening of the Shinkansen, they were likely the three fastest rail trips over 200 miles in the world. Here a good primer on the competition and the Chicago-Minneapolis schedule from 1952:

9:00-2:30, Morning Zephyr, 431 miles, 66 mph (in 1940: 6 hours, 72 mph)
10:30-6:05, Morning Hiawatha, 410 miles, 58 mph
1:00-7:15, Afternoon Hiawatha, 410 miles, 66, mph
3:00-9:15, Twin Cities 400, 409 miles, 65 mph
4:00-10:15, Afternoon Zephyr, 431 miles, 69 mph

There were several other trains, including overnight options, each day, and these five schedules which could get you between the Twin Cities and Chicago in barely the time it takes to drive today (without traffic). Today’s Empire Builder runs the route in 7:45, at a respectable 55 mph, but nowhere near the 70+ of yesteryear (between some stations, the trains averaged over 80 mph, stop to stop; runnings speeds well over 100 were not uncommon). So while railroad speeds have slowly increased on the East Coast, it’s the rest of the country that has seen speeds come down: in particular, the Twin Cities to Chicago market.

Why did this route have faster speeds than anywhere else? Part of it is geography. Each line had its advantages, but none had many tight curves or long grades, and there were few intermediate stops to slow the trains. But part of it is competition: not with car or air travel, but with each other. Nowhere else was there a similar three-way competition over this distance. Once one railroad established the 6-hours-or-so benchmark in the mid-30s, the others quickly followed suit, and it proved to be good business. They kept the speeds in to the 1950s, when regulations bogged down the railroads, and subsidies flooded road and airport construction; the trains slowly disappeared in the 1960s. Today’s Empire Builder follows several different pieces of the former roads.

In another country, there never would have been three trains plying the same route. French railroads were nationalized in the 1930s, and Germany and Japan’s railroads were decimated during the war and rebuilt afterwards. If American railroads had been similarly nationalized or had the same sort of investment, there’s a chance that the three competing railroads could have combined resources to build a single, higher-speed line: all had rolling stock capable of over 100 mph, so five or perhaps even four hour trips would have been possible even without electrification. However, after the war American railroads did not see government investment (we certainly spent more money rebuilding railroads in Europe than we did in the US) and without a time advantage over airliners or interstates, trains that averaged near 70 mph, and except for one line on the East Coast, haven’t come back.

Ten years after I enroll, Macalester’s transit is slated to improve

Ten years ago, I arrived in Saint Paul, Minnesota as a (n extremely awkward 18-year old) first-year college student at Macalester College. Recently the college tweeted that new students could follow the campus life account and hash tag to stay abreast of move-in information. This made me feel old: when I moved in, we didn’t have hash tags. Or Twitter. Or Gmail. And forget about smart phones; many of us didn’t even have regular phones. And the Spotlight was an anticipated publication because it had everyone’s picture and phone number. In print form. Three years later, it would be fully supplanted by Facebook (which was based on a series of similar publications at Harvard).

Some things, however, have not changed. The 63 bus still bisects campus on Grand Avenue, and the 84 still runs north-south along Snelling Avenue. Even so, the public transport options from Macalester to the rest of the world (beyond the “bubble”) have changed in the past ten years, and are about to change exponentially. The two bus routes which serve campus will still follow their streetcar predecessors’ routes, but new rail lines will finally give them more flexibility and greatly enhance service.

Public transit lines can be very slow to change. They are rooted firmly in history; in most cities bus lines are based on streetcar lines built around 1900, and this entrenchment is not frequently updated to reflect more modern travel needs. For instance, the 63 bus runs west from Macalester and dead-ends at the University of Saint Thomas a mile to the west. This is the same route it’s run since 1890. (The only changes have been in headways, which have varied between 15 and 30 minutes over the last 10 years.) It connects there with one spur route of the 21, although it’s not timed, so except to get to Saint Thomas, there’s little reason to take the bus west. In 1900, the neighborhood was focused on Saint Paul, and ridership was mostly to downtown. Now, with Minneapolis a major draw, the bus provides very little connectivity to the west, instead dead-ending at an unheated bus shelter with a single transfer.

The 84 is slightly-more updated. By 2002, it had shed it’s streetcar-era jog up Pascal and moved to a full run on Snelling. (It also shed it’s Saint Paul-specific route number in 2000 or so, when the bi-city numbering scheme was integrated.) In 2000, it had several branches, and the airport branch was only served every hour-or-so, providing quick but infrequent access to MSP. (This was dramatically improved by 2002, when, during the heyday of Macalester-airport connectivity, there was an airport-bound bus twice an hour and the single-seat trip took under 30 minutes.) In 2004, when the Hiawatha Light Rail line opened, the route was changed to provide connections to the train and thence the airport, increasing travel times (especially with the moronic Montreal loop, which adds an out-of-the-way mile to the route with no appreciable gain) and no additional airport-bound headways, although the other half of the buses do connect to the airport-bound 54 bus which makes a tolerable airport connection every 15 minutes.

As much as that particular route has devolved, connectivity to the light rail and Minneapolis has improved for the 84. And with the new line on University finally being built, Saint Paul in general, and Macalester in particular, is going to reap dramatically improved transit access.

To the south, the 84 will see an increase from four to six buses per hour. The Montreal loop will be eliminated, shaving several minutes from the Snelling-Hiawatha trip. Headways on that branch will not be improved, however, so connections to the Hiawatha Line (Apparently, the Hiawatha Line is going to become the Blue Line, and the Central Corridor the Green Line. It’s probably good—unlike Hiawatha, “Central Corridor” is a pretty horrid name for a transit line, but I’m still not used to it.) will not be improved. This is too bad, and hopefully the short-turn trips at Ford Parkway could be extended across the river. Still, there is an improvement in frequency to Ford Parkway, and an improvement in time to 46th Street, both of which are gains. (In comparison, when the Hiawatha Line opened, there was no improvement in headways coupled with a loss in travel time.)

To the north, the 84 will serve its current route, but do so 50% more often. In addition, at some point it might become a “rapid bus” service and eliminate many single-patron stops, speeding the route mightily.

To the east there will be no net improvement in weekday headways, although the renewed emphasis on the 63 bus will likely mean less of a likelihood of headway reductions in the near future. (In 2001, headways were 15 minutes on the route west of Downtown, in 2003 they were expanded to Sunray, in 2005 they were reduced to 30 minutes West of Downtown and in 2009 they were finally made 20 minutes on both sides of the route.) And the weekend headways, which are currently 30 minutes on Saturday and an hour on Sunday, will be improved dramatically.

Finally, to the west, the most improvements occur. Right now, outside of rush hour, travel to Minneapolis is a trip on the 84 and a transfer to the express-bus 94 (30 minute frequencies outside of rush hour) or the 16/50 (10 minute headways at least, but horrendously slow service. The light rail will halve scheduled times, and with the 84 matching its headway, the average connection at Snelling and University will be 5 minutes in both directions. The average trip time will be 30 minutes from Macalester to Nicollet, as fast as the current connection but with no traffic delays at rush hour and triple the frequency middays.

In addition, the 63 bus will provide service west and a connection to the light rail. So, from campus, there will be 9 options per hour to get to Minneapolis, and a quick wave of the smart phone will tell you which bus is slated to arrive next. If an 84 is 9 minutes off but a 63 is due in 2, walk to Grand. If the 63 just passed, grab an 84. Coming back, if you can make a quick connection at Raymond to the 63, hop on it; otherwise, stay on the train.

When I was on campus, I rode the bus east with some frequency to Saint Paul (15 minute headways and a 15 minute ride) but rarely ventured to Minneapolis. When I lived in Saint Paul, headways on the 63 were worse and there were still no good connections to Minneapolis, so I spent a lot of time bicycling. I’d still probably bike for this trip with the Central Corridor plan in place, but I can think of multiple times where I decided not to take a trip to Minneapolis because the weather was lousy and the bus schedules uncooperative. Having improved headways to all points of the compass will be a boon for Macalester students, and a boon for the residents of Saint Paul. Hopefully they’ll be enticed to come out and use it.

What’s at the corner of Plymouth and Queen?

When traffic is bad and I want to ski at Theodore Wirth Park, I take a back route from Saint Paul which culminates with a stretch of Plymouth Avenue in Minneapolis. Plymouth is not the most attractive of streets—it goes from an industrial strip east of Interstate 94 and then is all urban renewal from Emerson to Penn. It’s another half mile from Penn to Wirth Park, and the closer to the park the houses are better kept and a bit statelier, with fewer chain-link fences (a good sign of low income in the Twin Cities).

But one thing caught my eye. On the southwest corner of Plymouth and Queen Avenue is a rather peculiar-looking building. At first, it looks like many apartment blocks in the Twin Cities. It’s three stories high and tucked in to a normal city block. The neighborhood is mostly African American today, so it seems like no place to have a building with two six-pointed stars, right? Wrong:

View Larger Map

On a length of street where nearly every non-residential building (and several residential buildings as well) has been torn down and rebuilt (or not rebuilt), for some reason, this small synaguge stands practically untouched. It doesn’t seem to be in use. It’s just—there. A relic of a half century ago.

It turns out that the neighborhood went through quite an upheaval during the 1960s. North Minneapolis was where you went in the first half of the century if you weren’t allowed anywhere else. Plymouth Avenue was a commercial strip with a streetcar line (it still has the #7 bus) and was the center of the north side Jewish community—Litvaks and Russians and other eastern Europeans.

It was also home to one of Minneapolis’s African American communities, and the two groups apparently lived in harmony before and after the second World War, possibly because much of the rest of the city and its suburbs were closed to both groups. As with many other cities (such as Boston), the exclusionary titles were lifted piecemeal, and in the 1950s and ’60s, as the Jews began to move out (they could get loan guarantees in Saint Louis Park, blacks could not), riots accelerated the process. By the 1970s, the Jewish community had moved to the suburbs, even as it had been building new structures two decades earlier.

Perhaps it still stands because it is not that old. The building was erected in 1948—20 years before the riots that would finish off reshaping the neighborhood. It’s not particularly stately or obtrusive—at least not now in its shabby state—but it’s amazing that it still stands. Nearly everything else on the street has been demolished (here are several pictures of the street from the 1950s and 1960s) yet this shul looks exactly the same.

Bicycling directions: Google Maps vs. Cyclopath

When Google Maps launched bicycling directions, it was seen as a boon to the bicycling community nationwide. Finally, cyclists could see directions based on roads and trails, instead of being routed by the Googles on to highways and freeways. Speculation about the directions—that it would encourage more people to bike and even might influence city planning—abounds. People from Seattle to Portland to San Francisco to New York to Boston started throwing around reviews (mixed, actually; the service still feels very beta-y) about the new feature. It’s great that Google has released this product, but it feels like it might not be ready for prime time.

Around the same time as the feature launched, the first proofs of Bicycling Magazine’s annual ranking of cities for cycling came out, and there was a new #1. The newly crowned Minneapolitans (and their Saint Paulite brethren) were not as excited about the Google Maps cycling directions. Why? Because for quite some time, they’ve had their own version: Cyclopath.

Cyclopath was developed by, what’s best to call them, a bunch of bicyclist-geeks. Long before Google entered the marketplace, Cyclopath had developed, first as a project at the University of Minnesota and then as a “Geo-wiki” (part of it is to study of Recommender Systems, and even the behavioral science behind route finding). It was developed in 2008 and released to the public in the summer of that year, more than a year and a half before Google developed their nationwide network. It’s gone through several releases  and now incorporates users opinions of various roads. While Google depends on a very analytic approach, Cyclopath provides more subjective data for users, which it seems, is more useful in the long run.

Plus which, Cyclopath’s data—since it was first uploaded—is consistently updated by its users. Find a road which has been closed? You can close it. Has a road been repaved or has it become incredibly potholed by a winter of freezing? Change its bikeability. Need to add a road? Add it in. Want to write about a long traffic light or a weird lane merge? That can be added in, easily. Google’s still in beta; Cyclopath is humming along.

In comes Google. Cyclopath likes it well enough, and doesn’t really see it as a threat, since they think they are better. In reality, they are two different approaches to the same problem: how do you get from Point A to Point B (as long as, in the case of Cyclopath, you’re in the Twin Cities). So, which is better? Let’s go through a few differences.

Quality of Route

This is the big one, let’s get to it right off. Cyclopath, with years of experience and input, rarely routes you inefficiently (you can change its algorithm, too, see below). Google Maps, on the other hand, has enough mistakes (it’s missing, for example, the Sabo Bridge and will route you on an Interstate ramp) that it’s a bit of a pain to use. But it’s not so much these glaring omissions—it’s the turns that are missing, often turns you can make in a car (try, for example, to make a left turn from Cleveland Avenue in Saint Paul to Mississippi River Boulevard)—which result in convoluted directions. And if you put in a ZIP code and Google happens to located it on an interstate, forget about non-car directions (even the car directions are bollixed up). Until these issues are fixed—and I know of half a dozen in Minneapolis and Saint Paul alone, so there have got to be hundreds nationwide—Cyclopath wins, hands down. I’m sure in cities which went from zero biking directions to Google, it’s great, but they have a way to go to catch up with Cyclopath.

Flexibility of Route Search

When you search for a route in Google maps, you get several options: by car, by transit, walking or bicycling. Within bike directions, however, you have no options. There’s no way to avoid hills, or weight bike paths higher. They have gone on about their great algorithm, but there’s no way to know exactly how it works. The algorithm is what the algorithm is. In Cyclopath, you have choices. (see right) If you want to get from point A to point B as quickly as possible, you can choose to minimize distance. For a nicer, but potentially longer ride, choose, bikeability. And you can then assign penalties or bonuses to your routes for customization.

The one aspect of route flexibility where Google wins is in the post-search environment. With Cyclopath, you usually get a good route, but if you want to change it to, say, add a waypoint (often to get it to follow a certain road or trail) it won’t let you. You have to create a new route. Of course, Cyclopath can display multiple routes at once; Google can not.

Non-cycling Data

Cyclopath sounds great, but isn’t it just a glorified bike map with directions? Nope. While Google has added a lot of secondary data, Cyclopath more than keeps up. Google has more background layers, and draws on its wide search database to show photos and webcams and georeferenced Wikipedia articles and other such sundries which clutter the map. Cyclopath has a toggle for satellite imagery (the “P” key) which loads faster. In addition, Cyclopath has a plethora of local businesses and buildings tagged, some of which have very pertinent information added (such as “bike racks on north side” or “bathrooms on lower level”). In addition, Cyclopath has future trail alignments shown as being “closed” which Google omits.

Fixing data

If you want to fix data in Cyclopath—if you find a street which is closed (even temporarily, for construction) or a new bike lane or anything else which is missing, sign up, sign up, and edit away. There’s been little vandalism (a Star Tribune article from 2008 didn’t foresee any) and editing is encouraged to keep the map’s data up-to-date. The map is relatively easy to edit (although the onus is on users to assure that the network is configured correctly). In Google? Well, there is a link to email suggestions to Google. I have—more than once—and gotten an email that they are working on it. But it still gives wonky directions for those routes. And the ability to add data and comment on the quality of roads is, well, amazing functionality.

UI

Google Maps’ UI is a thing of beauty. Going from the clunky pre-Gmaps interfaces (yes, Mapquest, we’re looking at you, at least until pretty recently) to Google Maps, back in the day, was eye-opening. Zooming, scrolling and navigating were made far simple in Google Maps, and while it may be resting on its laurels, everyone else is just catching up. Cyclopath is a different animal, and while its main interface seems a slight bit clunkier than Google Maps (no, you can’t double click to zoom and recenter) it’s very well designed for a local, bicycling website, especially one which has editing capabilities and a community feel mixed in.

The Name

No one knows what to call Google Maps bicycling directions beta. “Google Maps Bike Directions”? “Google Bike?” Everything seems, well, clunky. Cyclopath has a great ring to it.

Geographic Range and expandability

Okay, here Google wins. Google Maps bicycling (or, um, whatever) is nationwide. Cyclopath is in the Twin Cities (one of which is the top cycling city in the country). Could Cyclopath be exported? Maybe. Its creators claim that it would take a month of tech work from a rather qualified person, and that there’d still be logistical issues (or, as they put it, “unknown unknowns”).

Implications for bicycling as a whole

Google Maps may actually stymie the development of Cyclopath-like websites in other cities—who may be content with their Mountain View bicycle overlords. While Google has created a respectable product, it does little to incorporate the huge knowledge base of cyclists around the country. Road users don’t so much care whether a street surface is concrete or asphalt, and how wide the lanes are. Cyclists do—and ceding the authority to Google by default may not be in the best interest for bicycling. Hopefully both services will thrive, and Google will become more suited towards biking. In the short term, Google Maps bike directions are good for cycling. In the long term, it has the potential to be a back-burner project for Google, but one which is just useful enough that enterprising individuals don’t continue to innovate with products and services like Cyclopath.

The Verdict?

Right now, if you’re in the Twin Cities, skip Google Maps. Cyclopath will give you better directions, and may even entice you to become part of the community. And any changes you make won’t come with a ticket number.

Site, situation and planning: Target Field

Game three at Target Field, looking east.

I managed to catch one of the games in the first series at Target Field in Minneapolis this week (my Red Sox were in town) and although the Sox lost, it was great to see a new stadium. It was actually the second in a week—I was at Kauffman Stadium in Kansas City last weekend for a Sox game (nice ballpark, in the ‘burbs surrounded by a sea of parking, and I didn’t have time to explore KC)—and it was very interesting to see how the park is sited, and how people are adapting to the new experience, both inside and out.

From a baseball perspective, it’s fun to see how people like the inside. I was born and raised on Fenway, and the Metrodome was, um, atrocious. After a Sox loss there, I was depressed. Watching my team get shellacked on Thursday, having skipped out of work, with the sun beating down and the cool breeze blowing, well, it was nice. There are some cute features (the two baseball players—Minnie and Paul—shaking hands across the river when a home run is hit or the game is won), the usual odd angles of a new ballpark, and no baggie in right field. And the view of the skyline is a great touch. Otherwise, it’s a perfectly good replacement for what was a perfectly poor excuse for a baseball stadium.

But this isn’t a baseball blog.

The geographic term “site and situation” is usually applied to whole cities or settlements, but it can really be used to describe the location of nearly any geographic feature. And with 40,000 people, Target Field (or any baseball stadium) can be described as a small city for three (or, in a Red Sox-Yankees game, four and a half) hours at a time. Basically, the site is physical characteristics of, in this case, the stadium. Situation is how it interfaces with what is around it; how it connects to other buildings, roads and transit.

Of all the arenas cities build to glorify their teams (or their selves), baseball parks generally see the most traffic. A football stadium may seat 70,000, but it only sees 10 games a year. Even with other events, such a stadium is hard-pressed to break a million fans. (There’s a good reason football stadiums are often, and maybe should be, built away from downtowns: their demand for parking does not mesh well with surrounding land uses, and moving that many people in and out can strain all but the best-equipped transit systems.) Indoor arenas, even when the combine basketball and hockey, sell out shy of 20,000, and there are only about 80 games a season. That’s 1.6 million. Add in some other shows, and you can break two million. (The Staples Center in LA, with two basketball tenants, may see more fans, although I can’t imagine Clippers games sell out.)

But baseball parks? They usually seat at least 40,000 (most new parks are around this figure). And they have 81 home dates a year. Throw in a few concerts, and you can bring more than three million fans in each year. From an economic development standpoint, baseball stadia are probably the best generator of people in sheer numbers. Even if they don’t have anything beyond baseball, they still bring in more visitors than any other arena.

Of course, the Metrodome didn’t do much for its surroundings. Much as it was 28 years ago, it is surrounded by, well, mostly by parking lots—a suburban stadium in the middle of a city (or, at least, a tangle of highway ramps). Target Field, for many reasons, may not suffer quite the same fate.

Target Field’s Site

Target field sits on a not-quite square plot of land on the northern fringe of Downtown Minneapolis. The street grid in Downtown is oriented to the Mississippi river, which flows five blocks to the site’s east. South of Hennepin, the grid is shifted slightly, but where the ballpark is located, the streets run almost perfectly 45˚ off of the cardinal directions (i.e. NE-SW and NW-SE). Before the ball park was constructed, there was a ditch between 2nd Avenue N and where 4th Avenue N would run. The southeastern half was taken up with the exit ramps of Interstate 394; the rest was a parking lot until it reaches the railroad tracks. The stadium is built above the former parking lot, with a pavilion extending above the railroad tracks.

The park is oriented due east—that is, the batter is looking straight at the rising sun and the pitcher throws the ball to the west. To fit the field in the confined location, the stadium needed to be oriented in a cardinal direction, and baseball stadiums are best located to the northeast. Baseball games are rarely played at sunrise, and this allows for the smallest chance that the sun will be in a player’s eyes. (Although there are two baseball stadia which are oriented due west—and they sometimes have to suspend play at sundown.) With baseball games starting in the afternoon (with one exception, the 11:05 a.m. start for the Patriots Day game in Boston), some parks face south of east, and some due north, but most face northeast. Here’s a great diagram of all the ballparks. And, in case you were wondering, this orientation is set forth as “desirable” in Major League Baseballs rules (1.04).

There’s another major reason for the orientation of the ballpark, but we’ll explore that in the situation discussion. Other than the fact that the stadium is built on stilts over a highway and a railroad (and, in the future, a bike path), there’s not much else exciting about the ballpark’s site, since it is basically reclaimed land (discussions of sites for cities often go on for much longer, incorporating terrain, water sources, deep harbors, rail corridors and the like). Basically, it’s a rather cramped city block in Minneapolis.

Target Field’s easterly orientation gives is a grand view of the Minneapolis skyline; it should be even better at night.

Target Field’s Situation

The situation of the ballpark—how it interfaces with the rest of the city—is much more interesting. The orientation, which is a site feature, is, perhaps, more importantly, part of the park’s situation. The reason that the park was sited facing east instead of north is the proximity of Minneapolis’s skyline—the highest buildings between Chicago and Seattle—sits to the southeast of the field. A northerly facing diamond would have nothing in view beyond the stadium’s walls. With the east-facing ballpark, several 800-foot-tall buildings loom less than half a mile above the field (and, yes, you can see in from the higher floors of some of them).

In fact, Target Field is significantly closer to the center of Downtown Minneapolis (we’ll define it as the IDS Center) than the Metrodome. As the crow flies, the nearest gate to Target Field is about a quarter mile from Nicollet. The Metrodome is more than twice that distance. There is quite a bit less surface parking around Target Field, too. Minneapolis has a lot of parking downtown, and, for the most part, these spaces are empty nights and weekends—which is precisely when they are needed for baseball. The Metrodome was almost completely surrounded by surface parking, while Target Field has only a few nearby surface lots.

This lack of surface parking is going to have several interesting effects on the parking market. First, the land near the Metrodome will lose much of its value for parking as the parking for the Twins and Vikings will be disaggregated. The Twins drew 2.4 million fans in 2009, many of whom parked in these surface lots. While Vikings fans will need somewhere to park, there are only about 600,000 Vikings fans, one fifth of the pre-2010 total. If the real estate market picks up in Downtown Minneapolis (one of the few under-construction buildings in the city is on a former parking lot near the Dome), these lots—especially the ones a bit further from the Dome—will net less cash from parking revenue, and thus be more likely to be sold for development.

Around Target Field, the parking situation is a bit more developed. Minneapolis has a many car commuters, and, thus, a lot of parking structures (and some surface parking). The Central Business District is strong enough that it is not infiltrated by surface parking, although there is a good deal on the flanks. The city operates three “ramps” (as parking garages are called here), called the ABC Ramps, which surround the field, have direct freeway access, and about 7,000 parking spaces (assuming 2.5 passengers per car, that’s half the stadium). There are, of course, dozens of other garages downtown, and even some surface parking. With the Target Center (home of the basketball Timberwolves—the hockey Wild play in Saint Paul) and several theaters nearby, the events parking market is rather well established, and there may not be a need to claim more land for parking. However, the few surface parking lots nearby will become more valuable as parking, which may hamper redevelopment efforts in the neighborhood, unless the ballpark increases their value as developed land.

The Twins, who originally played at suburban Metropolitan Stadium (now the Mall of America) have decreased nearby surface parking with each move. Their original ballpark was similar to Kauffman or Miller Park in Milwaukee—everyone drives, and many tailgate. Thirty years later, they are now playing in a very urban-feeling environment.

Target Field is also accessible by transit, and these connections are well publicized by the team and city, which hope to limit the volume of traffic around the stadium on game days. Amongst stadia with transit connections, there are actually few which are located as centrally on a transit system as Target Stadium, or at least as it has the potential to be. Stadia require quite a bit of land and, recently, quite a bit of parking, which are not generally compatible with the centers of transit systems. If you look at older ballparks (or former locations)—Fenway, Wrigley, Yankee Stadium, Shibe and Baker Park (in Philadelphia), Comiskey, Ebbets Field, the Polo Grounds—they are generally on transit lines, and far from the nexus of the transit system. Even in cities with new stadiums, like AT&T Park in San Francisco or the ballpark in Washington, D.C., the parks are generally not near main transit stations. In cities with major transit systems, land near major centers are just too damn valuable for a block of grass and stands which are only used 250 hours each year.

In other words, most baseball stadia require a transfer. They’re not near commuter rail terminal stations. They were built where there was cheap, vacant land, which, for older stadia, was usually a few miles out from the middle of the city. In Boston, this means that thousands jam the trolleys to Kenmore (when this coincides with the end of rush hour, for a 7:00 game, the trains are jammed). In New York, the two lines which serve the Stadium—the IRT Jerome Avenue Line (4) and the IND Concourse Line (B, D)—easily reach crush capacity, especially the over-capacity Lexington IRT which is already way beyond capacity (which is why they’re building the Second Avenue Subway), and the L to Addison in Chicago gets pretty full up to Wrigley.

Minneapolis has one rather-well used transit line, which was extended a stop to serve the stadium. The light rail vehicles on the line are rather large, with a crush capacity of more than 200, meaning a two-car train can carry nearly 500 passengers. Right now, the stadium is at the end of the line, meaning that fans can pour in to empty trains, and as long as the end of the game doesn’t conflict with rush hour (any weekday day games begin at noon, likely in the hopes the game will end before the height of the evening rush) and the trains should be able to clear passengers out before the rush. For 7:00 games, baseball fans will be traveling against rush hour, which is desirable. On evenings and weekends, the trains are relatively empty—the line is rather commuter-oriented—so they an be mostly devoted to game traffic. And the line was designed to stop adjacent to the stadium to allow for ease of boarding and alighting. There are no stairs, escalators or treks to the station. Many bus routes also pass nearby or terminate near the stadium.

In addition to the light rail, a new commuter rail service serves Minneapolis and stops below the stadium.  The 500 fans it can carry is small potatoes compared with the light rail (which can carry that many every few minutes) and it won’t even serve every game (it buys trackage rights from a very well-traveled section of one of the BNSF’s main transcontinental routes). However, it has large parking lots in the suburbs and special fares for ballgames, and appeared to be well-used this past week.

The line for the light rail was long, but orderly. Still, the boarding process needs to be streamlined.

There are definitely some kinks to work out. At the Metrodome, 4000 of the average of 30,000 fans came by train. Target Field seats 40,000 and should be sold out most of the season, and parking is harder and more costly; it’s presumable that upwards of 6000 fans will ride the light rail to the stadium. On Thursday, the line after the game was several hundred people long (but very orderly, as opposed to what happens in Boston or New York; it probably also meant that it was slower and that the maximum nuber of people were not filling the cars). MetroTransit had staff on hand, but did not have the vehicular capacity. In Boston, where the main sticking point is line capacity, the MBTA runs full rush-hour service before and after Red Sox games on the Green Line, and usually stores several cars in the Kenmore Loop, allowing them to run several trains outbound, one after the next, to deal with the post-game rush. Here, the line could support three car trains at three minute headways—700 people 20 times an hour—but was not utilized to that level.

MetroTransit needs to take heed. They have stub tracks beyond the station, and should have as many trains stored there as they can. With 300m of double-track, they should be able to have 10 cars—for 2500 people—stored there, although with two-car trains, only 8 cars for 2000 people may be feasible. They should then run these at three-to-five minute headways for the first half hour after the game. Additional cars stored just south of Downtown at the maintenance facility should be sent as quickly as possible, with boarding on both tracks. With the ability to run three-car trains, this would be a capacity of 8400 to 14000 per hour, more than enough to clear out the stadium traffic in 30 minutes after a game.

In the future, Target Field could become one of the most transit-centered ballparks in the country. Plans are moving forward to build the Central Corridor (to Saint Paul, 2014), and long range plans have these two lines, which will terminate at Target Field (thus doubling capacity through downtown), interlining through downtown with the Southwest Corridor (2015) and the Bottineau Transitway (to the northwest). With 7.5 minute headways (the current rush hour headways on the Hiawatha Line), 32 trains, each carrying up to 500 to 700 passengers, could pass Target Field each hour, carrying 16,000 to 22,000 passengers—more than enough capacity for the ballpark, and a capacity rivaling the transit capabilities of Fenway and Wrigley.

With ample parking in place and the possibility of increased transit service, Target Field may do a better job of drawing nearby development than the Metrodome. The Dome is in a no-mans land. It is surrounded by parking on all sides, and by freeways in two directions. Once transit showed up in 2004, its days as a baseball stadium were all but numbered. Target Field helps connect Downtown Minneapolis to the North Loop, a hodgepodge of new lofts, hip restaurants, and still-operational warehouses. It has a bit of parking, but most of this is a good distance from the ballpark, much further than the huge ramps nearby (thus, its value as parking won’t increase dramatically with the new ballpark). There is a rather obtrusive highway offramp between the stadium and the North Loop; however, if it were dismantled, would yield a plethora of developable land with half a mile of the Mississippi River, Downtown, transit and bicycle facilities. It is also slated to have a line of Minneapolis’s proposed streetcar network pass through it. The North Loop could benefit greatly from being linked to downtown by the park, which bridges the former two-block-wide trench between the neighborhood and the downtown with rather wide pedestrian concourses, and be further developed as a transit-oriented, mixed-use neighborhood, where there are currently underutilized light industrial plots or warehouses within a mile of downtown.

Finally, with Minneapolis currently the top bicycling city in the country, I’d be remiss to not mention the stadium’s situation regarding cycling. And walking. As far as walkability, the ballpark is a few blocks from Hennepin and, while not connected to the Skyway system (which are used more in the winter than summer) it is better connected by sidewalks and by the new pavilion built between the ballpark and the Target Center.

Ten minutes before game time (and ten minutes before the sun came out), the bike racks at the field were full, even though it had rained lightly in the morning. Several other similar racks line the stadium walls.

As for cycling, Minneapolis probably has more people who bicycle to baseball games than any other city. The bike racks at the Metrodome, which was actually located near more bike trails than Target Field, were always well used, but they were tucked away on one side of the building, away from most of the trails. The field is surrounded by bike racks (map [pdf]), including racks which line the northwest promenade of the field—built over the railroad tracks—and when I visited this week, they were all packed. Perhaps the Twins need to install some more.

In addition, the Cedar Lake Bike trail, which extends in to downtown from the southwest, is being extended under the ballpark. It will connect the bike trail along the Mississippi River to the stadium, and allow grade-separated bike access to the stadium, avoiding foot and car traffic. With these improvements, the bike facilities near Target Field will be unparalleled in the major leagues. (And, no, when I was living a similar distance from the ballpark in Boston, I never even thought of biking to Fenway.)

With easy transit options (a bus straight from my house; a nice bike ride along the river) and a lovely field I do want to see at night, I’ll be back.

When streets were streets

About a week ago, Infrastructurist posted about the various materials used for sidewalks. The consensus is that concrete is cheap and functional if not very environmentally friendly (both in its construction and its low permeability). Of course, in Paris, the streets are cobbled, which is beautiful, if a bit jarring to drivers and cyclists (although perhaps better than potholed asphalt).
Now, in America, except in a few instances (historic districts, or places where rich people gather, or both), streets are pavement. In some cases, concrete. Pavement is good when it’s good, but when it’s bad, it’s real bad. In other words, asphalt seems to have a wide range of conditions: new asphalt is silky smooth, but it doesn’t last in good shape. For a while it’s tolerable, until there’s a year with a lot of freeze-thaw cycles and gaps, gashes, frost heaves and, yes, potholes take over.
And that’s where we are in the Twin Cities. We’ve had an about-normal winter, but it’s been marked by a decent amount of warmer and colder temperatures. And snow. And plows. Minneapolis had enough snow accumulated that they had to ban parking on one side of narrow streets to allow traffic to flow, and all over there are huge gaping holes in the streets. And that’s meant we get to see what lies beneath.
Here’s the middle of the intersection of University Avenue and Vandalia Street in Saint Paul. University was once the main thoroughfare between Saint Paul and Minneapolis, and while most traffic now takes the paralleling I-94, it is home to buses and will, in a few years, be home to the Central Corridor Light Rail. Of course, University had a streetcar line, which was very well patronized (the buses still run at 10-plus minute headways, with limited service at rush hours) until it was closed in favor of buses in the early 1950s. 
But 55 years later, the streetcar tracks, at least, are making a (re)appearance. The Google Street View from a couple years ago shows solid pavement at the corner of Vandalia and University. However, Vandalia is the route to the interstate for many trucks serving the nearby industrial area, as well as going to a large BNSF multi-modal facility, and the corner sees a lot of heavy traffic. So with the current winter, the pavement has been torn up pretty well.
It’s actually not bad to drive on—the holes are wide enough that they aren’t all that deep (the sides generally slope) but so much pavement is gone that you can see the streetcar tracks as well as the pavement. And it’s really quite interesting. First of all, for such a wide road, the streetcar tracks really take up a small amount of room. The image above shows that the tracks are contained in a lane-and-a-half of a turn lane and median (no comment on how ugly the University streetscape is), and there are two lanes of traffic and a wide parking lane on either side.
But second, it gives us a really good idea of what streets used to look like. Here’s a closer-up look at the exposed section. The rail on the left is the southern rail of the eastbound track, the rail visible to the right is the southern rail of the westbound track. So, between the tracks were (are) gray cobblestones, and on the outside red brick. There isn’t much color film from the time, but it seems that University, with red and gray stone and silver, steel rails would be almost elegant (some trees would be nice as well). Now, with gray, gray and more gray, it’s quite drab.
Apparently bricks and cobbles don’t hold up well to heavy truck traffic, although this section seems to be doing just fine. Apparently bricks and cobbles were used along streetcar routes because they could be more easily picked up and laid down when track work was necessary. Of course, there’s a possibly apocryphal tale that Melbourne, Australia’s trams were saved when, in the ’50s, the tracks were set in concrete, so that ripping them up would be prohibitive (in the US they were mostly just paved over). The union’s intransigence there—they required two-man operation on buses, and streetcars had conductors until the 1990s, when their removal caused a crippling strike (long story short: government says “one person tram operation”, union says “no” and runs trams without collecting fares, government plans to cut power to the system, union drives trams on to streets in city center, where they sit for a month)—was probably more to blame.
When Lake Street was rebuilt in Minneapolis in 2005, the street below was in similar shape—shoddy asphalt over a firm streetcar base. Since it was not just repaved, it was dug up completely, and Twin Citians flocked to scavenge bricks from below. University, which is wider and longer than Lake Street, should be a field day for anyone who wants a new, free patio or walk—it will be fully rebuilt for the light rail line (yes, they’ve studied it, and they can’t just reuse the tracks already there).
But, why not build streets out of these materials again? The upside to pavement is that, for a while, you have a really nice road. But in the long run? You have ruts, dips and potholes. Another layer of pavement is a panacea; cracks almost always form where there were cracks before (it’s easy to find old streetcar tracks—they’re wherever there are parallel cracks running down the road). Bricks and cobbles are attractive and permeable. Water filters through, which is better for the environment. As long as there’s no heavy truck or bus traffic, they’re fine. If something goes wrong, it’s easy to make small repairs which actually last (as opposed to patches which tear out during the next thaw). And for cyclists, constant cobbles are almost better than old pavement with huge potholes and ruts, even if you have a good bunny hop.
I’m not saying it’s the way to go for every street, but in certain cases—especially if there are streetcars involved, red bricks and granite pavers may be the way to go. And in many cases, they may be lurking just below the surface already.

What happens when you halve parking?

Not when you have it. When you cut it in half. Minneapolis is not a city where finding a place to park is really a big deal. There are a few residential neighborhoods where you might not get a spot in front of your house—Uptown, Wedge, Whittier, and over by the University of Minnesota—but usually, even there, it’s not a huge deal to find a spot. In winter, there are snow emergencies, and everyone does a little dosey-do moving cars from one side of the street to another; then it’s back to normal.

Except, well, every once in a while. Starting on Thursday, there will be no more parking on the even side of the street. Until April, or whenever the snow melts. Apparently, Minneapolis has the authority to ban parking on one side of the street. Once fire trucks can’t get down the street because it’s too narrow (and they claim if they plowed all the way to the curb the sidewalks would be impassible), the regulations go up. The last time this happened was in 2001—nine years ago—and, well, it’s about to happen again.

So, what happens now? In much of Minneapolis, parking will go on as normal, just on one side of the street. But in the aforementioned perpetually parked-up neighborhoods, parking is going to be drastically decreased. It won’t be halved, exactly—snow emergency routes are exempt, so it’s only residential streets which are affected, and it doesn’t take in to account off-street parking—but in many areas there is going to be a significant decline in the availability of parking.

So, basically, Minneapolis is going to turn in to the parking equivalent of Boston, San Francisco or Chicago, pretty much overnight. It will be interesting to note several things. Will transit ridership go up—will it be worth a trip by bus if you don’t know if you’ll get a parking space when you get back? Will people start posting spaces on Craigslist for rent? Will some folks ditch their cars and make do with car sharing services? You better believe we’ll be watching.

Is bike sharing the “last mile” for car sharing?

A lot of hay is made about the “last mile” in public transport. Unless you live right at a bus stop or train station, your walk to the bus is going to be further than your walk to your car. (The term last mile derives from many other applications, such as communications and logistics, where the connections from end users to the main network are the least efficient, and thus most costly, to build and keep up. In transportation it relates to moving users from their origins and destinations to the nearest transit infrastructure.)

It’s an issue for car sharing, too. Even in the densest car sharing cities, many users live a few blocks away from the nearest shared car. (In these cities, of course, owning a car is generally very expensive and inconvenient, so the marginal gains from having a car right out your door are offset by the cost of a reserved spot or the time cost of circling the block looking for an unreserved one.) A car sharing network can be seen as similar to a transport network, with various access points spread across a region. With transport, the last mile is actually on both ends—getting from your origin to the network, and from the network to your destination—while with car sharing there is only an issue getting from your origin to the network as you then drive to your destination, so perhaps it’s more of a first mile issue. Still, it’s very similar—while there’s no hard research that I know of, anecdotal evidence is such that most car sharing users are willing to walk a quarter mile to a shared car, tolerant of maybe up to a half mile, but not very interested in going much further than that (similar to transit users).

Bike sharing may help to change that, by lengthening the distance people can travel to other modes. It fits in to a rather specific niche of the transportation network, for trips of between about 0.5 and 1.5 miles—trips that would be too short to bother with transit but too far to walk quickly. If bike share access is seamless and dependable—as is its goal—it can rather well fill this piece of the transport network. So before we look at how bike sharing and car sharing may interact, we should try to imagine where, exactly, bike sharing fits in.

In Europe, bike sharing has started up in the densest of cities—Paris (which is nearly as dense as Manhattan), Barcelona, Copenhagen—as well as many others. In North America, the first cities planning bike sharing systems are not necessarily the densest. Montreal, which is home to the successful Bixi system, is about as dense (11,000 persons per square mile) as Philly, although less-so than San Francisco (17,000) or Boston-Cambridge-Somerville (14,000). Boston is planning a system this year, as are considerably less-dense Minneapolis (7000) and Denver (4000), although, of course, the networks there will focus only on the densest portions of these cities. In a Paris, or even a Montreal or Boston, bike sharing will probably replace some trips made by transit or walking (or even short bike trips), but may not be as much of a driver of providing links to different modes, as transit is generally readily available. In the other cities, however, this may not hold true.

So there are basically two levels of cities implementing bike sharing. One is the dense city (>10,000 with a major fixed-guideway transit system and a large existing car sharing network: Boston, Montreal, Washington D.C., Paris, San Francisco …). The other is a less-dense city with a small fixed-guideway system and a fledgling car sharing system (Denver and Minneapolis, so far). Portland, which will likely join the bike sharing fray in the next couple of years, would fall in between, with its maturing transit system and a rather large car sharing market.

What bike sharing is best for are trips of a relatively finite distance, and it seems to vary based on the type of city (and which other transit modes are available). For trips significantly less than half a mile, you’d walk. The extra time it takes to get a bike and return it, even if there is a station right each end of a trip, is made up by the fact that by the time you got the bike, you’d be well on your way by foot. For trips longer than two miles, you’d likely want to ride your own bike (faster and more comfortable, but with a bit more overhead of storing a bike, carrying a lock and locking the bike) or ride transit (ditto, depending on the route), or use a shared vehicle. So bike sharing’s market is between about a third of a mile and a mile and a quarter (if you don’t mind locking your own bike) or a mile and a half (if you do)—perhaps a tad longer in cities without dense transit networks. Beyond that, biking, transit, a taxi or a car make sense.

So, how does it break down. Well, I made the following assumptions:

Denser city Less dense city
Mode MPH Overhead Mode MPH Overhead
Walk 3 0 Walk 3 0
Bike share 8 4 Bike share 8 4
Bike 12 7 Bike 12 7
Transit-slow 15 10 Transit-slow 15 12
Transit-fast 25 15 Car share+BS 20 
Car (Share) 20 10 Car (Share) 20 12
Taxi 20 6 Taxi 20 6
Trans-fast+BS 25  12  Transit+BS 15 10

MPH is, of course, miles per hour once using that mode. Overhead is the amount of time it takes at the beginning and end of the trip to get to the mode from the origin and from the mode to the destination. Walking has zero overhead. Bike share was estimated to have four minutes (a minute to the kiosk and a minute getting the bike on either end; this is probably a lowball estimate). Biking seven minutes: three minutes to get your bike out of storage, two minutes to lock it at the end, and two for incidentals (shoes, helmet). Transit-slow is for local routes, which are probably a shorter walk, transit-fast for faster routes (such as a subway) which are generally further away. Car share overhead is to walk to the car and unlock it, and adding Bike share (BS) to a mode can cut down on the walking time.

Bike share only makes sense in multi-modal situations in a few scenarios:

  1. In denser cities, to access faster transit. For longer trips, riding a shared bike a mile to a faster transit mode (say, a subway instead of a bus line) can allow most of the trip to be at a faster speed, and make the overall trip faster. Since most, if not all, transit stations served by bike sharing will have kiosks, this makes sense. In addition, it may allow users to travel to another transit line of the same level of service and eliminate a transfer, but, to keep things simple, these models don’t really look at transfers.
  2. In less dense cities, car sharing, which is quite dense in large cities, is a bit more diffuse. Thus, many potential car sharers might live more than half a mile from the nearest shared car. In Minneapolis, every HOURCAR in the initial service area will be within about 100 feet of a bike sharing kiosk, so dropping off the car is easy, and it may allow people a bit further away to access the vehicles. And bike sharing is much easier, here, than riding your own bike because you don’t have to bring a lock and lock it up (and worry about it)
  3. In less dense cities with less dense transit networks, it may make sense for some people to use bike share to access slower transit routes, especially if they live far from a route with frequent service, although in areas served by bike sharing, route networks are rather well established.

This perhaps, is best visualized by charts showing the time various trips take, based on the speed and overhead in the tables above.

The first chart is for denser cities, the second for less dense ones. For a given distance, the line nearest the bottom is the fastest mode. Cost is not taken in to account, but any orange or yellow line is a pay-per-use mode (taxi, car sharing) while any other line is a mode which is unlimited use, assuming most frequent transit and bike share users will have a monthly or yearly pass, so the marginal cost of each trip is zero. Dashed lines are variants of a mode with bike share added to the start or end of the trip to reduce overhead.

So in a dense city, where does bike sharing fit in to the picture? Well, assuming, for a minute, that we discount taxis (fast but expensive) and car sharing (expensive, fast, and not for short trips unless there is parking at the other end), bike sharing makes the most sense between about 1/3 miles and 1 mile if you have a bike of your own (or don’t mind locking said bike) and 1.5 miles if you would otherwise rely on transit. Considering that nearly half of trips are less than two miles from home, that’s a pretty big range—more tan a tad under half a mile and you’d walk, beyond two you’d take transit. However, bike sharing is generally only marginally faster than other options. Walking takes over for transit for trips much longer than 3/4 of a mile, so bike sharing will generally only ever save three to five minutes. So it better work well.

The other factor here is bike sharing and the faster transit network. What I mean by faster transit are generally grade-separated fixed-guideway modes (subway, proper light rail) but could also be express buses on highways. These lines are generally further apart than slower bus lines, so fewer people live within easy walking distance. In the chart above, for trips under three miles, it makes sense to take the bus (assuming it’s five minutes closer than the train), but if bike sharing can shave just a few minutes off the walk to the station, the train—which is more energy efficient and can more easily accommodate higher passenger loads—becomes a better option at distances of just over a mile—right about where bike sharing leaves off.

(Yes, it appears that bike sharing will actually make transit faster than driving at one point, but for very long distances, at least outside of rush hour, car sharing’s speed would be higher as drivers would access faster roads. This line should probably be curved (as should others) but that’s not really necessary for these simple simulations.)

In other words, imagine the following scenario: You live a block from a bus line, and the corner with the bus stop has a bike sharing kiosk. The bus line runs three miles to your office, or a store, or some such destination. You also live near a train station which has a line running to the same destination, but it’s a half mile walk from your house. Let’s assume that the bus and train have the same headways, that the bus runs at an average of 12 mph and the train at 25. Right now, your options are to walk to the corner, catch the bus, and ride 15 minutes to your destination; or walk ten minutes to the train, catch it and ride 7.2 minutes to your destination (17.2 total). With bike sharing, you can now ride at 8 mph 0.5 miles to the train (3.75 minutes), spend a minute at each end retrieving and returning the bike, and ride the 7.2 minutes, for a total of 12.95 minutes. So you save 2:03 versus the previous fastest mode time. It’s not a lot, but it’s a small advantage.

Of course, no transportation network is this cut and dry—but this is at least a way to imagine where bike sharing fits in. This summer, for instance, I wandered through Paris for a day with my family. We had two choices: the Metro or walking. Bike sharing was out because we didn’t have the proper credit card and my mother was scared of cycling through traffic without a helmet, and we didn’t know enough about the bus system to use it. (Taxis would have been an option, but they are expensive, slow—buses often have reserved lanes—and my family is cheap.) Had we had access to bike sharing, trips between half a mile and a mile and a half would have been easier and faster by Velib.

Now on to less dense cities. Here, the niche for bike sharing is similar, and maybe even larger, as we can assume that bus and transit service is a bit harder to come by. Bike sharing makes sense from about a third of a mile,  but this time is only exceeded by transit for trips greater than two miles. (This is due to the assumption that frequent bus routes are a bit less prevalent in these cities; living right near a good bus route would obviously change this equation.)

But it also shows the other advantages of bike sharing in these cities. First, bike sharing increases the utility of transit. It’s not a big difference, but with a more dispersed route network, we can assume that bike sharing allows a few more residents to live within “easy travel distance” of said routes. (Although this may be confounded by most bike sharing locations being near bus lines.) If this is the case, it makes transit faster than bike sharing around 1.5 miles—if a shared bike is used to access the bus.

Then there’s car sharing. While cities like Boston and Montreal have robust car sharing networks, Minneapolis and Denver don’t. In Boston, for example, there are entire neighborhoods where every resident is within a half mile—or often less—of not one but many shared cars. This just isn’t the case with Minneapolis and Denver. If bike sharing can be utilized heavily in these cities—and without as much competing transit there is a bit more of a market to seize—it could be the missing link to shared cars. These data assume that the time needed to access a shared car would drop from twelve minutes (±1/2 mile walking at 3 mph plus a minute to access the car) to seven (±1/2 mile biking at 8 mph, plus two minutes to get and return the bike, a minute to walk to the bike and a minute to access the car).

If there are bike share locations in locations other than car sharing locations (as is the plan, at least, in Minneapolis), they will allow people who may live a mile from a shared car to get to the car in eight or ten minutes (biking) instead of 20 or 25. This is the proverbial “last mile.” In less dense cities with higher car ownership, it is not always possible to support a shared car on every block. We’ll see if this becomes the case, but it is possible that a symbiosis will develop between the two shared transportation modes where bike sharing will allow a substantial increase in the reach of the car sharing networks in Denver and Minneapolis.