What’s up with the taxi queue at Logan?

Early Monday morning, on Twitter, Cambridge City Councilor Jan Devereux posted this photo of the taxicab line at Logan Airport:

Then she went to check out the Uber/Lyft line and it was no better:

By 1:30, others reported that the cab line was an hour long.

What’s going on here? Where are all the taxis? Where are all the Ubers? Why are people arriving at the airport after midnight then waiting an hour for a ride home? What can we do about this?

It’s not really a simple answer. Please, though, follow me down a rabbit hole.

Logan airport is not a hub airport (okay, not really: Delta and especially JetBlue are doing their best to create a hub, but it still is mostly an origin-destination airport). This is a matter of geography: because it is tucked away at the northeast corner of the country, the airport mostly handles passengers flying in one direction, south or west, either on direct flights, or to other domestic hubs (although international travel has increased markedly in recent years, and JetBlue even has a bank of later domestic flights to accommodate connecting passengers).

Boston’s flights can be grouped in to three main types: short haul flights to non-hub cities, short-haul flights to hub cities, and long hauls, both domestic and international. Only the first group operates without geographic constraints which dictate that flights can only arrive and depart at certain times of day. Non-hub short-haul flights, mostly on JetBlue and Delta (to places like AUS, BUF, RDU, MKE) are spread more evenly throughout the day, because they don’t have to make connections at hubs. Hub-based flights within the eastern half of the United States (say, as far as MIA, DFW and MSP). These flights account for many of the early departures, but few leave Boston after early evening. They don’t arrive in Boston until mid-morning, but are the bulk of the last flights arriving later in the evening. Because of these travel patterns, Logan has a lot of early and late flights: in the morning, people want to get to a connecting hub for the first “bank” of connecting flights, and in the evening, flights have to leave the connecting hub after the last bank has occurred.

(Not all airlines utilize banking at hubs—Southwest most notably runs continuous hubs—and there are pluses and minuses to each method, about which I won’t go into too much depth here. But basically, banking decreases fleet utilization and increases congestion at hub airports since flights arrive and depart all at the same time, followed, in some cases, by periods of relatively low flight activity, but passengers have much shorter connection times at hubs since connections are coordinated. It’s actually something like a pulse system for buses, except that airports have finite numbers of vehicles which can arrive and depart at any given time, and longer dwell times. As airlines have consolidated, hubs have grown and seen more frequent banks such that they are now closer to continuous operation, especially at large airports like Atlanta and Chicago. See how this is a rabbit hole? Also, when I say people want to connect to the first bank, I mostly mean airlines, no rational human being wants to be on a flight departing at 5:15 a.m.)

Then there are longer-haul flights. Transcons have to deal with time changes, cycle times, and the fact that flights generally don’t depart or arrive between 1 a.m. and 5 a.m. local time. So they arrive from the West Coast either as redeyes between 5 and 10 a.m., and then turn to depart between 6 and noon, or as day flights, arriving in the afternoon or evening. Thus, in addition to the overnight lull, there are basically no transcons which arrive in or depart Boston during the midday. International flights (mostly TATLs) generally are redeye flights going out, leaving Boston in the evening, and return during the middle of the day, arriving in the afternoon. All told, Boston has demand throughout the day, but particularly high demand for flights arriving later in the evening.

For instance, O’Hare and Atlanta, the two busiest airports in the country (by number of aircraft movements), have 29 and 24 flights scheduled to arrive after 11 p.m., respectively. Boston has 39. After 11 p.m., Boston is basically the busiest passenger airport in the country (about tied with LAX), and possibly the world (since in many countries, airports have noise regulations which limit late night flights). Yet at the same time, there are few flights departing Boston. The airport has only 14 scheduled departures after 11 p.m., and only six of these are domestic flights (all are JetBlue E190s, so they’re small planes). There is basically zero demand for passengers to get to the airport late at night. This creates a demand imbalance for ground transportation: there’s a lot of demand to leave the airport at midnight, but almost no one who wants to go there.

Here are some charts of the approximate number of airline seats arriving and leaving Boston. I adjusted for the typical arrival time at the airport (60 minutes for domestic, 120 for international) and assumed it would take 30 minutes for the average international passenger to clear customs.

(Note, the seat numbers for arrivals and departures don’t exactly match because each day at Logan is not identical and this was a snapshot of a day. This is total seats available, not total passengers, and is also a rough estimate based on plane sizes at different times of day, but should show general trends well.)

So, it’s clear that there is a good deal more demand to get to the airport in the morning, which doesn’t even out until around 9 a.m., various points of imbalance during the day, and then, starting around 7 p.m., significantly more demand to leave the airport.

A couple of personal anecdotes can illustrate this. The first illustrates the imabalce in the morning. Back before the Big Dig was completed (and, in fact, pre-Silver Line, and back when the airport had half the traffic it has today), when I was going to college, getting to the airport was, perhaps, worse than today. It involved both the elevated Central Artery and then the Sumner/Callahan tunnel complex: a trip to or from the airport to downtown could take an hour (which is, of course, not much different than it is now). For several years, however, the Ted Williams Tunnel had been open to commercial vehicles only. The connecting highways were not yet complete, so this was a way to keep the local streets from getting overrun by people trying avoid the congestion.

From Newton, where I grew up, my father came up with a solution, especially for early morning departures. He would drive me to South Station. Rather than risk the airport traffic, I’d get in a cab for the usually $10 or $12 trip under the harbor in the tunnel only cabs could use. Early one morning, I got in a cab at South Station and told the driver I was going to the airport. He quoted the fare: “$20” and didn’t turn on the meter. What I should have done is say “I’ll pay you whatever the meter quotes at the end of the ride, so it’s in your best interest to turn it on now,” but I was 18 and hadn’t quite figured that out, so at the airport, I paid him $20, noted his medallion number, and immediately reported it.

A month later my dad got a check for $20 from the Boston Police (which oversee taxi medallions), along with a note that the taxi driver had been given a stern talking to that he was never to refuse to turn on the meter for a trip within the city.

But I understand why the driver was reticent to take the fare. He would get to the airport and have two (bad) decisions. One would be to go to the taxi pool and wait in line for an fare back to the city: a long line, because there is much less demand going in to the city at 7 a.m. than there are taxis arriving at the airport. The other would be go cross back downtown without a passenger, but still incur the cost of driving, as well as the tunnel toll (which was one-way inbound at that point), with no passenger to pay it. Still, because of redeye arrivals from the West Coast in the morning, there is some traffic for cabs that do make it to the airport going back, although they have to cycle through the cab pool (or the Uber/Lyft pool) before their next fare. Even now, if you take a cab or a ride-hail vehicle to the airport in the morning, the driver is probably not particularly happy taking the fare.

The second example was an extreme example of the late-night issue. I was flying back from SLC and the flight was delayed several hours. Originally scheduled in at 11:30 (plenty of time to catch the Silver Line downtown and take the T home), the plane was more than three hours late, and didn’t arrive in Boston until about 2:30. The airport was empty. Yet a 757 had arrived with 200 passengers, and no one was making the trip at that point to pick us up. So we all converged on the cab stand, but there wasn’t a cab in sight. Immediately, people started self-pooling: it was clear that if we all took our own cabs, the line wouldn’t clear for hours. “Who’s going to Brookline?” “I’m going to JP, that’s close!” “I’m going to Concord.” “I’m going to Lexington, let’s share.” Every few minutes, a stray cab would roll up, three overtired strangers would pile in, and the line would get slightly shorter. I found a cab pretty quickly, but imagine those at the back of the line may have seen the sun rise.

Finally, here’s a picture of the departures level at Terminal A at 8 p.m. this past week.

Delta’s last domestic flight leaves at 7:45 (to MCO) and the last hub-based flight leaves at 6:56 (for ATL). Two international flights leave around 8:30. At this time, it’s a ghost town. Note: if you’re picking someone up at the airport in the evening, plan to meet them on the upper level, and note that Terminal A is a great place to wait without having State Police harass you. (Terminal B was pretty quiet, too.)

Here are scheduled arrivals and departures, by carrier, at different times of day:

Note: not all regional flights appear to be in this sample, for instance, there are no Cape Air flights shown after mid-evening, when Cape Air flies several late flights out of Boston, but these flights are minimal as far as number of arriving passengers is concerned.

Notice how departures peak in the morning, then lull in the midday, and then have a secondary peak in the evening, before domestic departures (except for JetBlue) tail off quickly after 7 p.m. International carrier flights are clustered arriving in the afternoon and leaving in the evening. But there is a clear imbalance for flights arriving and departing the airport.

In any case, this has been a problem for years, and it’s a structural issue pertinent to Logan Airport based on the airport’s geography on both a macro and micro scale. On a macro scale, the geography of the airport at the corner of the country means that, late in the evening, flights feed into it but don’t feed out. On a micro scale, the airport’s geography encourages taxi/app-ride/ride-hail use (I’ll call these taxis, for simplicity). The constrained location means that parking costs are high, because demand for parking outstrips supply. The proximity to areas with high trip generation (downtown, and high density areas nearby) means that taxi costs are often significantly lower than a day’s parking cost ($38) in the garage. The combination of these factors push many people to use taxis.

Much of the day, taxi supply roughly matches demand, and there is a minimal delay for these services. But this breaks down at the beginning and end of the day, especially in the evening. Once again, Logan’s geography comes into play. While the airport is close to the city geographically, it is expensive to get to for a taxi driver. When there is high demand for fares back to the city at 1 a.m.—especially once buses have, for the most part, stopped running—there is negligible demand to get to the airport, or even East Boston in general, so to pick up any fare would require the driver to deadhead to the airport.

Unless a driver happens to pick up a stray fare to East Boston, this requires a driver to travel several miles, and to pay the cost of the tunnel toll. Once at the airport, there is no promise that the trip home will be lucrative enough to cover these costs. They might get a $50 fare to a far-flung suburb. But it might only be a $15 fare to a downtown hotel or, worse, to Revere or Winthrop, meaning a driver would then have to drive back home—likely through the tunnel—and foot the bill for the toll both ways. Moreover, this is the end of the day for most drivers: except on a Friday or Saturday night, there is only so much demand for rides after 1 a.m. For many drivers, the potential upside of getting a decent fare from the airport doesn’t make up for the potential downsides, especially when the alternative is shutting off the app (or taximeter), driving home, and going to bed an hour earlier. There is a high disincentive to be in the last group of taxis at the airport: a driver might get one of the last passengers, but if not, there is not likely a job for several hours when the first redeye flights start to trickle in around 4 a.m. There is little incentive for taxicab drivers to go to the airport during this dwindling time, so demand is only met by drivers already in East Boston who need a fare back to the city.

This is not an easy issue to solve. It also shows why Uber and Lyft are basically just taxis: they are subject to the same supply and demand issues that affect the rest of the market. Alas, they’re providing the same service: a chauffeured ride from Point A to Point B. And the airport is pretty much the only place that cabs still have a foothold, partially because matching passengers to specific vehicles is quite inefficient with large groups, like you might find at an airport. This has been a recent point of contention at LAX, which consolidated its taxi and ride-hail facilities away from the terminals (as Logan is planning). It hasn’t gone particularly well to start, but I would venture to guess that there are similar supply and demand issues at LAX. (As several people have pointed out, the buses there are running much more smoothly, too.)

Of course, at LA, there is a temporal aspect to the complaints about #LAXit. Most of the issues are in the evening. Los Angeles has more balanced operations, with plenty of departures in the evening, both redeyes to the East Coast and transcontinentals, mostly TPACs but some TATLs as well. There is probably both more demand for cabs in the evening because LA is on the opposite side of the country as Boston, and also because most of the transcon redeyes leave before 11 p.m., and most of the later flights are international, which are fed more by connecting travelers and by passengers arriving at the airport much earlier. Thus, for the actual demand for taxis, there is a similar, if less pronounced, demand compared with Boston.

I scraped Twitter for #LAXit from the first few days and it seems clear that the issue is mostly in the evening.

But back to Boston. Here’s what the Logan cab pool Twitter feed (because of course Logan’s taxis have a Twitter feed) looked like last Sunday. There was a cab shortage by 8 p.m., and the late night arrival issue was foreseen by 10 p.m. It wasn’t a surprise. It is a market issue.

Is this feed a bot? Certainly not! Note the wrong months, typos, misspellings, random numbers of hyphens and use of quotations. The one thing that seems constant is the use of the word “need” when the airport has a cab shortage (with various qualifiers like all-caps or exclamation marks). I’m pretty sure it’s a guy standing by the taxi pool furiously typing tweets into the Twitter machine. So, I decided to scrape the feed (about 60,000 tweets), and code each tweet by whether it included the word “need” or not, to get a very rough estimate of the frequency of taxi delays at Logan.

From the charts of arrivals and departures above, we would assume that the airport would generally need cabs mid-afternoon, as well as in the evening. If we chart the arrival and departure relationship and the Twitter feed’s need for cabs together, and we shift the need for cabs back 1:15 (probably due to actual behavior of arriving passengers), voila, they match pretty darned well.

A few other notes on the need for cabs:

  • There is more demand on Sundays (36% of Tweets include the word “need”), followed by Mondays, Thursdays and Fridays (28%), with the least demand on Saturdays (20%)
  • The cab shortage is generally higher in the summer than the winter (and highest in May, June, September and October, while lowest in December, January and February), and it has been particularly high this year. In fact, the only higher demand for cabs at the airport was in February of 2015. I wonder why.

TL;DR: it is definitely getting harder to get a cab at the airport, especially during certain times of the year and at certain times of day. And when flights are delayed, this is exacerbated. Departing passengers generally still get to the airport on time, but arriving passengers get in later, meaning the cab shortage is even more acute. Which leads to situations like the one which occurred earlier this week at the start of this post, which may have taken you nearly that long to read

So what can be done about it? Well, Uber/Lyft could use their surge features to increase the cost of a trip to the point where it would make economic sense for drivers to come to the airport at this time of day. But that might double or triple the cost of a ride, so while it is a very market-based solution to the problem, it is not consumer-friendly. It (and taxi starters) could do a better job of pooling rides, and moving the Ubers and Lyfts to the same site might make pooling easier there. A very low-tech idea might be to figure out where vehicles are going and, at high-demand times, put people into lines based on regions to help them self-pool. This might nibble around the edges on the demand side, but it doesn’t help supply. It turns out that Lyft and Uber are not a magic panacea to mobility: they are subject to the same supply and demand issues as the rest of the world. And if the answer is pricing, it’s not a great answer, especially since prices might have to go up significantly to provide enough supply or suppress demand enough to satisfy market equilibrium, especially after midnight when there are really no other options available.

One solution, I think, is that rather than trying to bring supply to the demand, we should move the demand to where there is more supply: get people, en masse, downtown. This requires a magical invention: the bus. While the supply of hire cars is not limitless (there are only about 1800 taxicabs in Boston, and probably far fewer are active today, and many more Ubers and Lyfts, but a finite number), it is significantly less constrained on the other side of the Harbor. Instead of trying to entice drivers to come to the airport, we could instead move riders to where are there are more cars. Most riders are going north, west or south of the airport, and need a ride through Downtown Boston anyway. The bus might not be that appealing to a traveler at 1 a.m., but neither is a 45 minute wait for a cab. This basically takes what LA is doing, and extends it a couple of miles.

The MBTA runs the Silver Line until 1:15 a.m., which could easily bring passengers to South Station, where catching a taxi or ride hail vehicle is easier than at the airport. Massport and the T, however, do a poor job of advertising these late buses, both with signage telling passengers the hours as well as real-time information about the buses’ whereabouts (important especially if you are unsure if the last bus has left). But these are easy issues to solve. The bus real-time data is available: I have no issue pulling it up on mbtainfo.com, for instance.

Not helpful, especially if you’re trying to figure out if the last bus has left, or even deciding if it’s worth waiting in a cab line versus waiting for the bus.

And Massport could put up static signage:


And as I’ve written before, with some minor schedule tweaks, the T could use the Silver Line 3 returns from Chelsea to supplement this service even later, and keep one bus in service to make an extra round trip to provide service until 2:30 when, on most nights, the planes have all landed. Alternatively, or in addition, Massport could continue its Back Bay Logan Express bus later in the evening and into the early morning (or even 24/7), providing late night trips to the taxicab-rich parts of Boston when there are cab shortages at the airport (and perhaps even direct service to large hotels in the Back Bay).

Even more, the Logan Taxi Twitter feed often includes this kind of Tweet:

By 10:00 most evenings, someone at Logan knows how many late flights are coming in. So, conceivably, the bus driver could be held on duty to make extra trips in the cases of delays. Massport, which already helps to subsidize the fares for the Silver Line, could shoulder the rather minimal cost of the extra trips. And passengers arriving at midnight would no longer have to face an hour-long wait for a cab, when there are many more options across the harbor.

The market has never provided enough cabs at Logan when they are needed, and at certain times of day, lines of cabs are the rule, not the exception. Assuming the market will take care of this has never worked, and it is unlikely that it ever will. If Massport worked with the MBTA, however, it could pilot a project to move people downtown and create a secondary taxi queue there, where drivers would be much more willing to go for a fare, because even if the demand had dried up, they wouldn’t be out the tunnel tolls, mileage and time to show up at the airport.

Bus yards vs TOD: where is the best place to store buses?

Boston has a bus problem. Beyond narrow, congested roads and
routes which traverse several jurisdictions—in some cases half a dozen in the
span of a single mile—there are simply not
enough buses to go around
. At rush hour, some MBTA bus routes only have
service every 20 to 30 minutes, despite crush-capacity loads on the vehicles
serving them. To add significantly more service would require the MBTA to add
additional buses to the fleet, but procurement of new vehicles is not the rate-limiting
factor. The larger issue is that the MBTA’s bus storage facilities are
undersized and oversubscribed, so adding new buses would require adding
additional storage capacity to the system, a high marginal capital cost for any
increase in service.

Before doing this, the MBTA may be able to squeeze some
marginal efficiency from the system. All-door boarding would reduce dwell
times, speeding buses along the routes. Cities and towns are working with the agency to
add queue jumps, bus lanes and signal priority, steps which will allow the
current fleet to make more trips over the course of the day. Running more
overnight service would mean that some number of buses would be on the road at
all times of the day and night, reducing the need to store those buses during
those times (although they might need to be serviced during peak hours, and may
not be available for peak service). Still, all of this amounts to nibbling
around the edges. Improving bus service may result in increased patronage, and
any additional capacity wrung out of the system could easily be overrun by new
passengers. The MBTA’s bus system is, in essence, a zero-sum game: to add any
significant capacity, the system has to move resources from one route to
another: to rob Peter to pay Paul.

Furthermore, Boston’s bus garages are
antiquated. In the Twin Cities—a cold-weather city where a similarly-sized bus
fleet provides half as many trips as Boston (although about the same number of
passenger miles)—nearly every bus garage is fully-enclosed, so buses don’t sit
outside during cold snaps and blizzards as they do in Boston. Every facility
there has been built since 1980, while several of the MBTA’s bus yards date to
the 1930s; some were originally built for streetcars. Boston
desperately needs expanded bus facilities, but it also needs new bus garages:
the facilities in Lynn, Fellsway and Quincy are in poor condition, and the
Arborway yard is a temporary facility with very little enclosed area.

However, what Boston’s bus yards lack in size or youth they
make up for in location. The MBTA bus system is unique in the country in that there is no bus service through downtown: nearly every trip to the city requires a transfer from a
surface line to a rapid transit line. In the past, elaborate transfer stations
were built to facilitate these transfers, with streetcar and bus ramps above
and below street level (a few vestiges of this system are still in use, most
notably the bus tunnel at Harvard), with bus routes radiating out from these
transfer stations. When the Boston Elevated Railway, the predecessor to
the MBTA, needed to build a streetcar yard, they generally built it adjacent to
a transfer station, and thus adjacent to as many bus routes as possible. Many
of these have become today’s bus yards, and the MBTA has some of the lowest
deadhead (out of revenue service) mileage to and from the starts of its routes.

From a purely operational standpoint, this makes sense: the
buses are stored close to where they are needed. But from an economic
standpoint, it means that the T’s buses occupy prime real estate. Unlike rail
yards, which need to be located adjacent to the lines they serve, bus yards can
be located further away. While this introduces increased deadhead costs to get
the buses from the yard to the route, it frees up valuable land for different
uses. In recent decades, the T has sold off some of its bus garages, most
notably the Bartlett Yard near Dudley and the Bennett Yard near Harvard Square,
which now houses the Kennedy School. The downside is that the T currently has
no spare capacity at its current yards, and needs to rebuild or replace its
oldest facilities.

While the agency has no concrete plans, current ideas
circulate around using park-and-ride lots adjacent to rail stations for bus
storage, including at sites
adjacent to the Riverside and Wellington stations. The agency owns these
parcels, and the parking can easily be accommodated in a nearby garage. The
issue: these parcels are prime real estate for transit oriented development,
and putting bus garages next to transit stations is not the best use of the
land. Riverside
has plans in place, and Wellington’s parking lot sits across Station Landing, which has
hundreds of transit-accessible apartments.

In addition to what is, in a sense, a housing
problem for buses, the Boston area has an acute housing problem for people. The
region’s largest bus yards are adjacent to Forest Hills, Broadway and Sullivan
Square: three transit stations with easy downtown connections. These issues are
not unrelated: there are few large parcels available for housing or transit
storage (or, really, for any other use). If the region devotes land to housing,
it may not have the ability to accommodate the transit vehicles needed to serve
the housing (without devolving the region in to further gridlock). If it uses
transit-accessible land for storing buses, it gives up land which could be used
for dense, transit-accessible housing. What the transit agency needs are sites
suitable for building bus depots, on publicly-owned land, and which would not
otherwise have a high-level use for housing.

Consider a bus maintenance facility: it is really something
no one wants in their back yard. And unlike normal NIMBYism, there actually
some good reasons for this: bus yards are noisy, have light pollution, and
operate at all times of day, but are especially busy for early morning
operations. An optimal site for a bus yard would be away from residences, near
highways (so the buses can quickly get to their routes), preferably near the
outer ends of many routes, and not on land which could otherwise be used for
transit-oriented development. It would also avoid greenfield sites, and
preferably avoid sites which are very near sea level, although if necessary
buses can be stored elsewhere during predicted seawater flood events.

The MBTA is in luck. An accident of history may provide
Boston with several locations desirable for bus garages, and little else. While
most sites near highways don’t have enough space for bus yards, when the regional
highway system was canceled
in the early 1970s, several interchanges had
been partially constructed, but were no longer needed. While portions of the
neighborhoods cleared for highways have been, or could be, repurposed in to
developable land, the “infields” of highway ramps is not generally ripe for
development. Yet they’re owned by the state, currently unused, convenient to highways
and unlikely to be used for any other purpose. For many bus routes, moving to
these locations would have a minimal effect on operation costs—deadhead pull-in
and pull-out time—and the land will otherwise go unused. Land near transit
stations is valuable. Land near highways is not.

Building bus yards in these locations would allow the T to
add vehicles to the fleet while potentially closing some of its oldest,
least-efficient bus yards, replacing them with modern facilities. They wouldn’t
serve all routes, since many routes would still be optimally served by
closer-in yards with shorter deadhead movements to get the buses to the start
of the route. (To take this to an extreme: it would be very cheap to build a
bus yard at, say, the former Fort Devens site, but any savings would be gobbled
up by increased overhead getting the buses 35 miles to Boston.) Highway ramps
are optimal because it allows buses to quickly access the start and end of
routes, many of which, by history and happenstance, are near the highways

Most importantly: moving buses to these locations would enhance
opportunities for additional housing, not preclude it. Building thousands of
new housing units adjacent to transit stations pays dividends several times
over. It increases local tax revenues and also creates new, fare-paying transit
riders without the need to build any new transit infrastructure. Finally, by
allowing more people to use transit for their commutes, it reduces the growth
of congestion, allowing people driving—and people riding transit—to move more

Specifically, there are five highway sites in the region
which could be repurposed for bus fleet facilities:

  • Quincy, in between the legs of the
    Braintree Split
  • Canton, on the aborted ramps of
    the Southwest Expressway
  • Weston, where the new all-electric
    tolling has allowed for streamlined land use
  • Burlington, in the land originally
    planned for the Route 3 cloverleaf
  • Revere, in the circle where the
    Northeast Expressway was originally planned to branch off of Route 1 through
    the Rumney Marshes.

In more detail, with buses counts from the MBTA’s 2014
Blue Book
. These are in-service buses required, so the total number of buses
at each location, accounting for spares, would be 15 to 20 percent higher. The
system currently maintains approximately
1000 buses

Quincy (67 buses)

All 200-series Quincy Routes

The current Quincy garage serves the
200-series routes, with a peak demand for 67 vehicles. The current garage is in
need of replacement. The current yard takes up 120,000 square feet on Hancock
Street, half a mile from Quincy Center station. This could easily be
accommodated within or adjacent to the Braintree Split, with minimal changes to
pull-out routes. Serving additional routes would be difficult, since the
nearest routes run out of Ashmont, and pull-out buses would encounter rush hour
traffic, creating a longer trip than from the current Cabot yard.

Canton (35

24, 32, 33, 34, 34E, 35, 36, 37, 40

This would be a smaller yard and would
probably only operate during weekdays with minimal heavy maintenance
facilities, but would reduce the overall number of buses requiring storage

Weston (71 buses)

Routes 52, 57, 59, 60, 64, 70/70A, all
500-series express bus routes.

With the recent conversion to all-electronic
tolling on the Turnpike and different ramp layout, the land is newly-freed,
plentiful, and many buses serving this area have long pull-out routes from
Boston. The portion between the two branches of the Turnpike and east of the
128-to-Turnpike ramp is 500,000 square feet, the same size as the Arborway
Yard, and there’s additional room within the rest of the interchange. Without a
bus yard west of Boston, any route extending west or northwest would benefit
from this yard.

Burlington (50 buses)

Routes 62, 67, 76, 77, 78, 79, 134, 350, 351,
352, 354

These routes utilize serve the northwest
suburbs, but most are served by the Charleston and Bennett divisions in
Somerville. Most routes would have significantly shorter pull-outs.

Revere (157 buses)

The two oldest bus garages north of Boston are
Lynn and Fellsway, which account for a total of 125 buses and about 200,000
square feet. They are both centrally-located to the bus network, so moving
buses to the 128 corridor would result in longer pull-outs, except for a few
routes noted above. However, the circle where Route 1 turns northeast and the
Northeast Expressway was originally planned and graded towards Lynn across
Rumney Marshes has 750,000 square feet, and the extension towards the marshes
more. The fill is far enough above sea level to not worry about flooding, and
grade separation allows easy exit and entry on to Route 1. Some buses may make
sense to base at the Route 3 site, particularly the 130-series buses. In
addition to the Lynn and Fellsway buses, this site could take over for many
routes currently operating out of the Charlestown yard, freeing up capacity
there for other uses.

Other routes served by the Charlestown yards
would face somewhat longer pull-out times from Revere, but given the development
potential in Sullivan Square, the T could consider downsizing the yard facility
there and moving operations to a less valuable site. This site, at more than
one million square feet, could likely replace the Charlestown bus facility

Bus shuttle upsides: Finding opportunities from irregular operations

Starting next weekend, the Lowell Line will shut down on weekends for nearly six months, to allow the installation of Positive Train Control (PTC) and expedite track work for the Green Line extension. These are worthy and necessary projects. PTC will make the Commuter Rail system safer and more reliable, and GLX will bring better transit options to tens of thousands of daily riders.

No one likes a bus shuttle, but they do give us an opportunity to try new and innovative service patterns. Yet the T has taken the Lowell Line schedule and made it all but unusable, nearly tripling the duration of a trip from Lowell to Boston, while at the same time ignoring nearby resources—the 134 bus and the Haverhill Line—which would be duplicated by the Commuter Rail replacement service. TransitMatters recently wrote about how the MBTA could optimize Orange Line shuttles in Roxbury and Jamaica Plain using parallel Commuter Rail service, and this page has written about how the MBTA could optimize the Alewife-Harvard shuttle. This is a similar idea.

The Lowell Line dates to the 1830s—one of the first railroads in the world—when the Boston and Lowell Railroad was built as a freight line to serve the factories on the Merrimac. Its proponents underestimated the potential for passenger traffic and for the most part avoided existing town centers, yet the fast travel time—a stagecoach trip took most of a day, and even in 1835 the B&L made the trip in under an hour—attracted significant passenger traffic: an early lesson in the concept of “induced demand.” Two centuries later, the trip is still reasonably fast, direct and, because it was originally built to avoid town centers, hard to approximate with buses on nearby streets.

The railroad runs 25 miles from Boston to Lowell, while a bus zigzagging to serving each station runs 35, nearly all on narrow, local roadways. No wonder the schedule from Wellington to Lowell requires an hour and forty-five minutes. This is the reason that permanent replacement Commuter Rail service with buses on the weekend which is floated from time to time is a non-starter: buses are unable to efficiently make intermediate stops in town centers over a long distance. Rail service can, and, with the implementation of Regional Rail elements (i.e. level boarding platforms, faster-accelerating electric trains), could do so more quickly and efficiently than it does today.

As proposed, the Lowell Line bus replacement schedule makes use of Wellington’s proximity to I-93, and buses begin there, rather than downtown. This is similar to the busing taking place this summer on the Worcester Line, where buses have connected to the Green Line at Riverside. Yet for the Worcester Line, the T provides express service from Framingham to Riverside (which is significantly faster than the local route) and local service to serve stops in between. For the stations in Newton, no service is provided, but nearby bus routes, and the Green Line, provide service without slowing the trip from further out.

A similar concept could be applied to the Lowell Line. There is no redundant service for the outside portion of the route: a bus trip making each stop from Lowell to Anderson/Woburn is scheduled to take 45 minutes, as long as the full rail trip from Lowell to Boston. From there, rather than wending their way through Woburn, Winchester and Medford, replacement service could run express down I-93 to Wellington, reaching the Orange Line in an hour and, with a transfer, getting a traveler North Station in 1:15, not a particularly fast trip, but better than a two-hour crawl. For trips to and from Winchester and West Medford, no additional service would be required: it’s already there in the form of the 134 bus.

The 134 runs almost the exact same route as the proposed replacement shuttle. It passes through Winchester Center, within a stone’s throw of Wedgemere, and a half mile from West Medford (which is served directly by several other bus routes), from which it continues to Wellington. The service is provided hourly, which is more frequent than the Commuter Rail shuttles, so intermediate travelers from, say, Winchester to Lowell could ride into Wellington, and connect to a bus to Lowell. To provide the same span of service would require that a few buses—two on Sunday morning and two each evening—be extended by a few stops to Winchester (this might be something small enough that it could be done in the short term, without waiting for a new schedule). Most passengers would find taking the 134 as convenient, if not more so, than the replacement shuttles.

This idea would also save the T operating costs. The current Lowell Line shuttles are scheduled to take 1:45 from Lowell to Wellington, and 1:45 back. Running directly from Anderson/Woburn to Wellington would cut this to an hour, saving nearly 90 minutes of operating time for round each trip. With 16 round trips each weekend, this would save 22 hours of operation. Extending a few 134 trips to Winchester would claw back three or four additional hours of service, but it would still result in 18 hours of operating hours saved each weekend. Given that this project is slated to run from now until December, it will affect 20 weekends of service, and if a bus costs $125 per hour to operate, this would save the MBTA $45,000 in operating costs.

Another option, rather than running buses to Anderson/Woburn and on to Wellington, would be to skip the Anderson/Woburn stop—which is a large park-and-ride, so people using it could park at other, nearby stations—and run directly from Wilmington to Reading instead and connect to Haverhill Line service. This train runs parallel to the Lowell Line only a mile to the east, and Reading would be roughly a 40 minute ride from Lowell. The Haverhill Line weekend schedule would have to be increased slightly to provide the same level of service that the Lowell Line does: currently the Haverhill Line is served by only six trains on a weekend day, with three hours between trains. With the Lowell Line shut down, Keolis should have some additional staff available for these trains, since the net operation would still be less than the Lowell Line running. This would not only better-utilize existing resources and provide a better product to the traveling public on the Lowell and Haverhill lines (although the cost savings from less busing may be canceled out by running more trains), but it would draw in new riders to the Haverhill Line with more frequent service.

This table assumes a cost of $125 per hour for bus service, $750 per hour for rail service (estimated here), and that each train would only require a single bus.

Alternative Travel Time
Bus Hours Train Hours Cost:
per weekend | total
Local bus to Wellington 2:00 56 0 $7000 | $140,000
Express bus to Wellington 1:15 38 0 $4750 | $95,000
Bus to Haverhill Line 1:10 26 9 $10,000 | $200,000

Assuming you’d need two buses to handle any instances with more than 50 riders, the calculation would be:

Alternative Travel Time
Bus Hours Train Hours Cost:
per weekend | total
Local bus to Wellington 2:00 112 0 $14,000 | $280,000
Express bus to Wellington 1:15 76 0 $95,000 | $180,000
Bus to Haverhill Line 1:10 52 9 $13,250 | $265,000

While the Reading/Haverhill Line alternatives cost more (because they require more railroad operations) passengers would pay a Commuter Rail fare from Reading, nor does it take in to account additional Haverhill ridership, which would recoup some of this expense. Another alternative would be to have Amtrak’s Downeaster trains stop at Reading for bus passengers to Lowell, although capacity may be an issue. These estimates do not take a detailed look at how buses would be deployed, although the current schedule seems to show buses laying over at Wellington and Lowell for more than an hour, hardly an efficient use of resources. The Haverhill Line alternative, in particular, would allow a bus to make a round-trip in two hours, matching the frequency of improved train service there.

The installation of PTC gives us opportunities to experiment with different replacement service. Instead of simply drawing a line on a map, the T should be creative in leveraging existing infrastructure to provide the best possible product to the traveling public, while at the same time finding ways to reduce operating costs. These often go hand-in-hand, and the Lowell bus service is an example of how, with some small changes, the T could save time for its passengers and money for itself.

What to do with Central Square

Traffic-wise, Central Square is a mess. Squeezed in to the streets are about 30,000 vehicles on Mass Ave and Prospect Streets, bus routes—most of which terminate in or near Central—serving more than 30,000 daily riders, thousands of cyclists and countless pedestrians going to and from work, home, businesses and transit. (This leaves out the tens of thousands of Red Line riders moving through under the street.) The street has been rebuilt many times, most recently between 2006 and 2009, to widen the sidewalks and realign Lafayette Square at the east end of the area. Sitting as it does adjacent to Kendall, Central has seen more traffic (of all types) in recent years, and often devolves in to gridlock at peak times.

That’s a lot of space for cars, isn’t it?

Still, the Square is remarkably car-oriented for a community where the majority of residents don’t drive as their main means of transport. Bike lanes are an afterthought, and cyclists jockey for space as buses, taxicabs and parked cars pull in and out, crossing and frequently blocking the bike lane. It is one of the most dangerous locations in the city for cyclists, which is no surprise to anyone who bikes there. For pedestrians, crosswalks are frequent and Mass Ave and Prospect Street have five second leading pedestrian intervals, but sidewalks are still congested, especially near transit stops which often fill with riders if a bus is a few minutes off of its headway.

Back in the day, transit riders boarded streetcars in the center of the street
in Central Square (these were not exclusive lanes but rather “safety zones
where passengers could board streetcars while automobiles passed on the
right; cars could pass on either side of the platform.

And transit riders? They have it worst. Long queues can form entering and exiting the too-narrow subway entrances at Pearl Street. Bus riders have a small shelter on Mass Ave, which is often inadequate for the number of riders waiting for the multiple routes which board there, and riders on Route 70 are forced to board buses a block away from the Square, on Green Street, with minimal shelter, narrow (just five feet wide!) sidewalks and on a grungy back street which is often so choked with traffic the bus can barely manage a crawl between the stops.

Unlike most other parts of the 1 Bus route, there are parallel streets in Central which could be used to alleviate traffic on Mass Ave and provide safer options for cyclists and pedestrians and better conditions for transit riders. It would require a major rethinking of how street space is used, changing the direction of Green Street and moving eastbound traffic one block to the south. That hurdle aside, Mass Ave could be reapportioned to allow for a safe, separated bicycle facility, bus stop consolidation at a single point adjacent to the Red Line (not, for many riders, a block away), and a transit-only facility stretching several blocks, free of the traffic snarls that routinely hold up buses. It would also (gasp) reduce some street parking, but the majority of businesses in Central cater to walk-in traffic, and there is ample parking at the too-numerous parking lots nearby and at the ugly-and-should-be-torn-down-for-housing Green Street Garage.

So, how do we create a Central Square where pedestrians, cyclists and transit riders are put first, and not an afterthought?

1. Green Street flips from west to east. This allows all of the traffic from Mass Ave to be shunted south on Pleasant Street by the Post Office and then left on to Green. (Franklin would probably also be flipped from east to west, which would have the added benefit of eliminating a the Franklin/River intersection, which has very poor sight lines.) Green would be two lanes wide, with one lane for through traffic and the other for deliveries and drop-offs and potentially parking between Magazine and Brookline. While this would increase traffic on Green Street, it would be mitigated by removing most if not all of the buses (more on that in a moment). Furthermore, there are very few residential buildings on Green Street, which is really mostly a service corridor for Central Square, so the impact of any additional traffic would be minimal. The street is 24 feet wide, which is wide enough for two 12-foot travel lanes.

Once past Pearl Street, traffic would be able to filter back to Mass Ave. Some traffic would take Brookline Street, mostly to zigzag across to Douglass Street and Bishop Allen. Traffic destined to Main Street could turn here, or signals could be changed to allow a straight-through move on Sidney Street. Traffic going towards Boston could continue on Green Street as far as Landsdowne, where the diagonal street allows for less severe turns.

What about westbound traffic via Bishop Allen and a transit-only corridor? There are several reasons this is suboptimal. First, it’s probably good from a political and practical sense to have some vehicular access to Mass Ave. Otherwise you wind up with some dead-ended narrow streets abutting the square. Second, the right turn for through traffic from Mass Ave to Bishop Allen is very hard to figure out. The Sidney Extension-Main-Columbia turn would be implausible increased traffic. Douglas Street is only 20 feet wide and is probably too narrow for trucks. Norfolk is 24 feet, but then you’re creating a busy turn right in the middle of the square. Finally, complete streets include cars. They just don’t make them the priority.

2. Mass Ave eastbound is rerouted to Green Street. As described above, all traffic from Mass Ave eastbound would be diverted to Green Street at Pleasant. Traffic wishing to turn left on to Prospect would take a right on Pleasant, and a left at Western. Light timings would be changed at Western to allow for additional traffic. Mass Ave Westbound would remain as is.

Eastbound traffic patterns for traffic to and from Mass Ave. The dashed line shows where traffic would be allowed but not encouraged; signs would direct through westbound traffic to Mass Ave to proceed to Landsdowne Street, but right turns from Brookline to Mass Ave would be permitted. For simplicity, not all traffic movements are shown.
Eastbound traffic patterns for traffic to and from Mass Ave. The main change would be the split for traffic destined to Sidney Street and Pearl Street, where turning traffic would share a separate lane with buses before turning left.

3. A two-way busway would be built on the south side of Central Square from Pleasant to Sidney. Eastbound buses would be exempt from the turn to Green Street and instead proceed directly down Mass Ave. East of Pearl Street, this busway would allow for some general traffic: right turns from Brookline Street to Mass Ave and left turns from Mass Ave to Pearl. The busway would also allow emergency vehicles (including from the nearby firehouse) to bypass gridlock in Central Square, creating BRT elements in one of the most congested areas of the 1 bus route (as opposed to, say, the Silver Line, which has bus lanes in the least congested part of the route). Bus stops would be consolidated between Pearl and Essex for betteraccess to transit. (This 160-foot long section could accommodate four 40-foot buses.) Buses would be able to loop as follows:

  • 1 is a through route. CT1 should be eliminated. Short turns could be made via Pleasant-Green-Western.
  • 47 would go left from Brookline to the busway. Loop would be made via Pleasant-Green-Western. A single-bus layover would be retained at the end of Magazine Street. This would eliminate the need for passengers to walk a block to transfer.
  • 64, when not operating through to Kendall, would loop via University Park, but instead of serving stops on Green Street, it would loop back to the busway. Left turns would be allowed for buses from Mass Ave to Western.
  • 70 would loop via University Park as above, making inbound and outbound stops on Mass Ave, eliminating the walk to Green Street and the inadequate boarding facilities there.
  • 83 and 91 would use a left-turn lane for buses only on Prospect Street (currently a painted median) to allow access to the busway. An actuated signal there would allow a left turn phase when necessary (approximately once every ten minutes, which would have a negligible effect on other traffic). Buses would then loop and layover in University Park like the 70. This would allow these routes to serve the growing University Park area, which has seen significant development in recent years. 
A busway, a cycletrack, a travel lane and even some parking! Emergency vehicles would be able to use the busway, too.

4. Eastbound bus stops would remain largely where they are on the south side of the street, but any pull-ins and bulb-outs would be removed to allow vehicles to maneuver more freely. (The additinal crossing distance would be mitigated by the bus platform mid-street.) Westbound bus stops would be placed in the center of the roadway; one between Pearl and Essex (approximately 160 feet long) and another east of Sidney Street (60′ long, for the 1 Bus only), where those buses (and Pearl Street turns) would be shunted to the left. These stops would be ten feet wide, significantly wider than the current stops on Green Street. Pedestrians transferring between the Red Line and westbound buses would have to cross just the westbound traffic lanes of Mass Ave, no longer making the trek to and from Green Street. West of Essex Street, the bus lanes would jog to the right to allow clearance between the headhouse and elevator for the main entrance to the Central Square station. The bus platform—which could be raised to allow level boarding akin to the Loop Link in Chicago—would span the distance between the Pearl and Essex crosswalks, allowing access from both ends of the platform. (The bus platform for eastbound buses could also be raised.)

MBTA bus routes shown, including loops for routes terminating in Central. At non-rush hours, the 64 bus would follow the route of the 70. The dashed blue line shows the ability for the 1 bus to short-turn (today known as the CT1). Other buses, such as the MASCO shuttle, could also use the busway.
East of Pearl, the busway would allow some general traffic (left-turning cars to Pearl Street). Through traffic would remain on the north side of the street, and the cycle track would have no vehicular crossings between Brookline and Prospect.

5. In between the westbound bus stop and the westbound traffic and loading zone lane would be a 10- to 12-foot-wide cycletrack, running from Sidney to Inman. Except where adjacent to the firehouse, it would be raised above grade and separated from traffic. At either end, a separate bicycle signal phase would allow cyclists to move from existing bicycle facilities to the center of the roadway. This would eliminate the constant conflicts between cyclists, motorists and buses. Bicycle traffic calming measures would be required in the vicinity of the bus stop at Pearl Street with high pedestrian traffic, but cyclists would otherwise have an unobstructed trip from Sidney to Inman (with traffic lights at Brookline and Prospect, where a bicycle phase might be necessary for right turns). For turns to Prospect and Western, bike boxes would be provided to allow two-stage turns. For turns to minor streets, cyclists could use areas adjacent to crosswalks. Since bike lanes in Central Square are frequently blocked by vehicles, this would wholly eliminate these issues.

A bus-only facility would dramatically improve facilities for transit passengers, a cycletrack would eliminate car-bike conflicts make biking through Central much safer, and a bus platform would decrease crossing distances for pedestrians. And there would still be ample room for taxis and loading zones on the westbound side of the street.

Why not side-of-street cycletracks? A few reasons. If it weren’t for the location of the Red Line headhouses, it would probably make more sense to have side bike lanes, but we should assume that the Red Line infrastructure are immovable. Putting the cycletrack in the middle of the street means that you don’t have right-hook issues (although right turns from the cycletrack are trickier). Second, bus stops. Central is one of the busiest bus transfers in the MBTA system without an off-street facility (think Alewife, Harvard, Forest Hills, Ashmont, Sullivan, Kenmore, etc). You’d need large floating bus stops and really need to pull the cyclists back from the street. Third: pedestrian traffic. There are a lot of pedestrians in Central Square. A successful cycletrack would need significant separation from the sidewalks to avoid becoming choked with pedestrians. This is a lot easier to do in the middle of the road than it would be alongside the sidewalks. Finally, the busway creates the need for a buffer between the westbound travel lane and the buses, which is a perfect place for the cyclists. You do have two points of conflict on either end of the cycletrack to transition from the existing lanes (which can be signalized) but otherwise have relatively clear sailing for cyclists devoid of the current maze of turn lanes, parking spaces and taxi stands.

East of Sidney Street, Mass Ave westbound would split, with left-turning traffic to Sidney and Pearl to the left of the bus stop island for the 1 bus (the floating stop on the south side of the street would serve the 1, as well as routes short-turning at University Park). The westbound bike lane could be cycletracked inside parking. Both bike lanes would have a signal phase at Sidney to allow a safe transition from the side of the street to the center-street cycletrack.

6. The westbound lanes of Mass Ave would be 22 to 24 feet wide, allowing the current travel lane as well as a wide area for a loading zone for area businesses, a taxi stand and other pick-ups and drop-offs near the transit station. These uses would no longer conflict with bicycle traffic. Some street parking could be provided, but it is probably best relegated to side streets nearby or parking lots (there are generally few on-street spots today anyway).

All of this might increase traffic congestion for some drivers. (Horrors!) But it would benefit the large majority of users of Central Square who arrive by transit, walking or biking, or a combination of all of them. Central once had transit stops in the center of Mass Ave (for streetcars), and it’s time that those users were the priority for the heart of Cambridge, not an afterthought.

The problem with the CT1

The 1 bus is one of the busiest routes in Boston. It runs along Massachusetts Avenue, touches three subway lines (and the Silver Line), and is an important crosstown route, despite frequent bus bunching and traffic delays. The bus is chronically overcrowded; I’ve regularly counted 78 people on a 40 foot bus, even with frequent service. It is supplemented by the CT1 “Limited” service route, but the CT1 is poorly planned and integrated, and winds up being a waste of resources on the route. (Speaking of resources, we’ve argued in the past that the corridor should have bus lanes on the Harvard Bridge and in Boston, with a more equitable allocation of space for corridor users.)

The CT1 is barely a limited service route. The two routes overlap between Central Square in Cambridge and BU Medical Center in Boston. In theory, the CT1, by making fewer stops, should be able to make the trip significantly faster than the slower 1 bus. What follows is an exhaustive list of stops that the 1 bus makes that the CT1 bus does not:

  • Mass Ave at Albany Street
  • Mass Ave opposite Christian Science Center
  • Mass Ave at Columbus Ave
That’s it. 
In general, a limited stop route should serve no more than half the stops that the local service does. (For instance, limited-stop routes in Chicago make only about one in four stops the local buses serve; the Twin Cities is similar.) But in this case, the local route makes 13 stops, and the limited route makes 10. A few years ago, several poorly-utilized stops on the 1 bus were cut. (This included the particularly inane stop in the median of Commonwealth Avenue which required crossing the same number of streets as stops within a few hundred feet at Beacon and Newbury. The stop at Columbus Ave is within 500 feet of the Mass Ave Station and could be similarly consolidated. For those of you keeping track at home, that’s less than a two minute walk.) If most of the stops are served by both buses, there’s really no point in having the two separate routes overlap and not make the same stops. Cut Columbus and consolidate Sidney and Albany in to one mid-block stop and you can have both buses make the same stops.
Not that anyone really waits for the CT1, anyway. Passengers, for good reasons, generally will get on whichever bus comes first unless the next is visible. If a 1 bus pulls up, get on the 1 bus; it’s rare for it to lose so much time at two or three stops that it gets caught by another. The CT1 is really more of a short-turn of the 1 bus (the inimitable Miles on the MBTA agrees as to its lack of usefulness), serving the busier portion of the route between Boston Medical Center and Central Square. Yet the schedules aren’t integrated, so, at times, two buses are scheduled to leave Central Square within a couple of minutes with a subsequent 10-plus minute gap. 
For visual learners, this chart shows the combined 1 and CT1 bus headways
at Central Square, and a moving average of five buses. By combining the
1 and CT1, the effective headway could be reduced significantly. In other
words, the orange line shows the average headway of the bus (what would
be possible if the routes were combined and better dispatched) while the dots 
(blue and orange) show the effective headway of service provided today.
What this creates is a situation where resources go underutilized. Often a bus will leave Central Square packed to the gills, and another will leave mostly empty two minutes later—and invariably catch up with the bus in front of it—and then no bus will run for 10 minutes. Yet if the two routes were combined, rush-hour service could be provided every seven minutes (down from wait times as long as eight minutes in the evening and ten in the morning) at rush hours and 10 to 12 during the midday (current wait times are as long as 15 minutes midday). Currently, the 1 bus uses 7 to 14 vehicles depending on the time of day, and the CT1 either 2 or 3 (data from the Blue Book). Reassigning the CT1 vehicles to the 1 bus would reduce the headways from 9.5 minutes to 7.5 minutes at morning rush, 14 to 11 minutes midday, and 8 minutes to 7 minutes in the evening (it’s possible it may be better since there would be less bunching delay to require more recovery time). This is somewhat related to the poor interlining of the 70 bus which this page has discussed in the past. The effective headway of the bus—the longest headway during any given time—is longer than it would otherwise be. 
Last year, through Cambridge’s participatory budgeting system, voters there overwhelmingly supported signal priority for the 1 bus, and, according to Twitter, it is currently being installed. This is important, as it will allow better schedule adherence for buses which otherwise get hung up at the many lights through the city (traffic, on the other hand, is another question this page will attempt to answer in coming days). Better dispatching is important as well to allow short turns when two or three 1 buses run back-to-back (which happens all the time).

The CT1 may have made some sense when the 1 bus made more stops, but today it just serves to gum up the works. After 22 years, it’s time to axe the CT1 and improve the 1 bus. Relieving the route of a few extraneous stops was a good start. Cambridge has taken another step forward with signal priority. All-door boarding and pre-payment would be easy at major stops, since most are adjacent to stations with fare machines (and others, like MIT, could have machines installed). Loop Link-like platforms and stations would help as well (Loop Link is an example of where the city and its transit agency actually talk to each other). And dedicated lanes? Well, that’s probably further off, but should be part of an iterative process. Otherwise, we’ll waste most of the small, but important, improvements to the 1 bus so far.

A more efficient Alewife-Harvard shuttle could save $30,000 per day

I had the opportunity yesterday to ride the rail-replacement shuttle from Alewife to Harvard. (I’m not faulting the T for such shutdowns at all, maintenance needs to happen.) But the buses are run very inefficiently, and if the route was changed, it could halve the number of buses required to provide the service, cutting the cost of operating these buses by tens of thousands of dollars, and provide better service for most riders.

The issue is that while Alewife is a pretty straight shot from Harvard by rail, it isn’t by road. Somerville pushed hard to have Davis included in the Red Line extension in the 1980s, and the subway follows the old Fitchburg Cutoff from Davis to Alewife, less than a mile. But the bus route is longer: it runs out from Davis to Teele Square and Clarendon Hill, then turns on to the narrow-laned Alewife Brook Parkway (going inbound, this is a very tight turn for buses; the bus I was on was forced to drive over the sidewalk to make it) before running through the mess of an intersection at Route 2 and on to Alewife, a distance of more than two miles (with half a dozen traffic lights). And the buses here are mostly empty: on weekends, relatively few passengers board at the park-and-ride Alewife, with more coming from Davis and Porter squares.

Here’s how the buses operate currently (approximately):

0:00 leave Harvard Square
0:06 leave Porter Square
0:11 leave Davis Square
0:24 arrive Alewife

From Porter and Davis, this only amounts to a three to five minute delay versus the subway (plus a transfer penalty and traffic). From Alewife, however, it’s closer to a fifteen minute delay, since the trip from Davis takes so long. And even though the buses rumbling along Alewife Brook Parkway are mostly empty, the cost of operating a bus is the same whether it has 60 passengers on board or six, and there are often four empty buses lined up in a traffic jam on Alewife Brook Parkway waiting for the long light cycle at Mass Ave or Route 2.

Let’s assume the T uses 4 buses per train and that there’s a train every 8 minutes. That would mean that with a 48 minute round-trip operation time, there would be 24 buses on the route at any given time (this doesn’t include schedule recovery time at either end of the line, and turning time at the Bennett Alley end of the Harvard Tunnel, which are the same in both scenarios). Imagine if, instead, you had the following:

  • Three buses leave Harvard with a destination of Davis stopping at Porter. With a busway, buses are able to turn at Davis, and by stopping in the busway will provide better passenger amenities there and provide a single stop in Davis.
  • One bus leaves Harvard to Alewife. This bus could either run directly to Alewife via Concord Ave, or out to Porter on Mass Ave and then via Rindge to Alewife (coming back, buses would have to use the Concord Ave routing to get to Harvard). This is about a 10 or 11 minute trip.
So, instead of every bus making a 48 minute round trip, each bus would make a 24 minute round trip. In other words, rather than every bus operating 4 miles from Harvard to Alewife, each bus would operate just 2 miles. Just like that, you’d need half as many buses to provide the same—or better—level of service, doubling the efficiency.
For Alewife riders, few are making a short trip to Davis; most are going at least to Harvard or further on the Red Line. These riders would save several minutes—even with less-frequent service—with a direct trip. Passengers going from Alewife to Porter or Davis would have a longer trip and a transfer, but there are few such riders; for the large majority passengers, the trip would be as fast or faster. The service would be slightly more complex, but could easily be explained by staff—who are present at every station during these diversions—and signage.
How much would this save? At a marginal operation cost of $125 per hour, 12 fewer buses per hour and 20 hours of service per day, this amounts to $30,000 of operational savings, perhaps more if these operators are earning overtime. And this could be implemented next weekend; even if the drivers are already scheduled, they could be paid but not drive or put on routes if other drivers called in sick. The savings wouldn’t be as high immediately, but the floating slab project runs for another two years (with further shutdowns beyond then for routine maintenance). With eight or nine shutdowns per year this year and next, streamlining shuttle service would save half a million dollars per year—money that could, for example, fund half the cost of all-night service.

Would it work? I think so. In any case, it’s worth a try. Do it for one weekend. If it works, and if it saves money, implement it for good. There are some pretty big dollars left sitting on the table if you don’t.

Robust, equitable and efficient all-night transit for Boston

Do you think that the T should implement real, useful 7-day-a-week late night service? Make your voice heard! Email latenightservice@mbta.com by April 4. More details here

A more condensed version of this proposal can be found at Commonwealth Magazine.

The recent post regarding the T’s early morning routes has been one of the top three most popular ever posted to this page, surpassing 5000 views (and much more quickly than any previous post). But if you thought that I’d just discovered the early morning routes, you’d be wrong, I’ve known about them for some time (yet never had need to ride one). However, what piqued my interest was the fact that these routes could be used for something much larger: actual all-night service for the MBTA service area.

In the aftermath of the MBTA’s
decision to cancel its recent late night service program, it might be useful to
consider some facts that are not well known, and that may provide the pathway
toward establishing a robust late night transit service that is regional in
scope, that responds to clear needs, and that does so affordably. Of the top 15
transit agencies in the country, only three—Boston, Houston and Atlanta—fail to
provide some overnight service. The plan laid out in this proposal is built
upon the T’s current early morning service, but rather than serving only Friday
and Saturday nights, it is geared primarily toward getting people to their late
night and early morning jobs.
The MBTA currently runs
approximately a dozen
early-morning trips,
originally geared towards fare collectors and now oriented more towards
early-morning workers (they were not shown on public schedules until 1999).
These trips are shown on published schedules—often with just a small schedule
notes—but otherwise not publicized (although this page described them in some detail). These trips arrive at Haymarket around 5:00am,
with connecting service via the 117 Bus to Logan Airport
A study of early morning service
conducted by CTPS (MassDOT’s Central Transportation Planning Staff) in 2013
found these services to be well used. Indeed, there was extreme overcrowding
on one route: the single 117 trip (Wonderland-Haymarket) carried 89 riders. In
response, the MBTA added two additional trips as well as earlier trips on Bus routes
22, 23, 28 and 109.
This map shows ½ and 1 mile buffers of the proposed late night
network superimposed on the T’s current route map.
See a full-size map here.

This proposal would use these
trips (with some minor changes) as a baseline for a new, more robust
“All-Nighter” service. This would allow the use of current MBTA bus stops and
routes, and be mostly an extension of current service, not an entirely new
service. It would provide service to most of the area covered by MBTA rail and
key bus routes. The changes include:

  • The primary connection point would move from
    Haymarket to Copley. This significantly shortens many of the routes and
    avoids time-consuming travel through downtown Boston to Haymarket,
    allowing a single route to operate with one vehicle instead of two, thus keeping costs down. In
    addition, Copley is somewhat more central to late night activity centers.
  • The current early-AM routes provide good coverage
    near most rail and “key bus” corridors with the exception of the Red Line
    in Cambridge and the Orange Line north of Downtown. (This plan does not address the longer branches to Braintree and Newton which serve lower-density areas which would have lower ridership and higher operation costs.) To fill these gaps the
    Clarendon Hill route would be amended north of Sullivan Square to follow
    the route of the 101 bus serving Somerville, Medford and Malden. A new
    route would be added following Mass Ave along the Red Line/Mass Ave
    corridor to serve Cambridge, then run through Davis Square and terminate
    at the Clarendon Hill busway.
  • A separate service would be run from Copley to
    Logan Airport. It would follow surface streets from Copley to South
    Station and the Seaport making local stops, use the Ted Williams Tunnel to
    the airport, and then terminate at the Airport Station, where it would
    allow connections to the 117 bus, which would terminate there rather than
    Copley. This bus could be operated or funded by MassPort in partnership with the MBTA, much like the Silver Line, since it would directly benefit the airport. This service
    could be through-routed with the 117 bus to Wonderland via the airport,
    which wouldn’t require additional buses and would eliminate a transfer.
  • Hourly service would operate on all routes, with
    a “pulse” connection at Copley. (What’s a pulse? Here’s the answer.) All buses would be scheduled to arrive at
    approximately :25-:28 past the hour and depart at :32-:35 past, allowing
    customers to transfer between the various lines at this time. A dispatcher
    could hold buses to make sure passengers could connect between lines. With hourly headways, a timed and guaranteed connection is required to provide any network effect and allow access between routes. 
  • Cities served by these routes could set traffic
    lights to “flashing yellow” for the routes between midnight and 5 a.m. to
    best accommodate schedules (this is already the case on many of these
  • Buses to the airport would allow employees to
    arrive a few minutes before the hour, in time for shift start times, and
    would then make a second loop through the airport to pick up employees
    finishing shifts a few minutes past the hour.
  • Airport buses would also allow overnight
    travelers to make their way to downtown by foot, bicycle, Hubway, taxicab
    or TNC (Transport Network Companies like Uber and Lyft), and make the
    “last mile” to Logan on a bus. This is especially important for
    late-arriving flights to the airport at times when there are often few
    cabs available. The MBTA could explore public-private partnerships with
    TNCs or other providers to bring customers to Copley Square to access
    all-night service.
  • The :30-past pulse time would allow workers
    finishing shifts on the hour to access buses to Copley, or walk to Copley
    itself, for connections to their final destination.
This service, based on current
late-night and early-morning published schedules, would require 10 vehicles for
four hours (approximately 1 a.m. to 5 a.m.), or 40 hours of service per day (with an extra hour on Sundays). At
this time, the MBTA operates approximately 10 hours of service covering the
early-AM routes, so the net hours of service would be 30. In addition, these
trips could be added to existing shifts, so rather than a deadhead trip between
a terminal and garage at the beginning or end of service, they would utilize a
bus already in service, saving an additional 6 hours (approximately) of
service, so the net hours per day would be 24.
Assuming a marginal cost per hour
of service of $125 (since this service would require no new capital equipment or vehicle storage, because
most of the bus fleet lies idle overnight, the full cost should not be used for
these calculations), this would cost approximately $1,095,000 per year;
assuming ridership of 843 per night (based on existing counts), the net cost
would be $757,000, with a subsidy of $2.46 per rider, in line with existing bus
subsidies—the cost might be slightly higher if the T needed to assign an inspector to the overnight service and extra police personnel, but they may already be on duty at those hours and could be shifted from overnight layover facilities.
Further, if Massport provided the
link between Copley and the Airport on an in-kind basis (as they do for SL1
airport fares), it would reduce the cost to the MBTA by approximately 10%; if Massport
through-routed such services along the route of the 117 it would reduce the
MBTA’s expenditure by 20%. Thus the range of cost to the T would be somewhere
between $600,000 and $1.25 million, between 7% and 13% of the cost of the most
recent discontinued late-night service. This service would serve approximately
308,000 riders annually.
While “Night Owl” bus service was
run from 2001-2005, it was perceived as serving very different population and purpose than this
proposal, focusing on the “drunk college kid” demographic on Friday and
Saturday nights only (the most recent late night iteration had the same issue, although the T’s equity analysis showed otherwise). While that population would certainly benefit from
overnight service, this service would be aimed directly at providing better
access to overnight jobs—in addition to the airport, most routes would pass
nearby major hospital clusters—especially from low-income areas.
These routes would (unlike the
prior late night services) follow existing bus routes and stops, provide
coverage to much of the region’s core neighborhoods—but not necessarily to each rail station’s front door. For example, the Green Line in Brookline would be served
by the 57 bus along Commonwealth Ave and the 39 bus on Huntington Ave, within a
mile of the B, C and D branch stations in the town, thus providing a similar
level of service more efficiently (and obviating the need to create nighttime-only
bus stops along the rail lines). Most of the densely populated portions of
Boston, Brookline, Cambridge, Chelsea, Everett, Revere, Malden, Somerville and
Medford would be within a mile of service, with additional service to parts of
Newton and Watertown. 

In addition, by following normal bus lines, buses
would use existing, known stops along major streets (rather than requiring
passengers to search for nighttime-only stops adjacent to or nearby rail
stations), and bus numbers could even match daytime routes (for instance routes
could be named: N15/9, N28/SL5, N32/39, N57, N1/88, N93/101, N117) to provide
continuity. The goal is to make the system both useful and easy to understand
both for regular users and customers with less-frequent overnight needs. 
(Using existing routes would also reduce the start-up costs for such a service.)

The T’s current
plans to mitigate the removal of late-night service
are anemic, targeting a
single line or a couple of trips on a single day. This proposal, on the other
hand, would bring overnight service to much of the area which hasn’t had such
service in more than 50 years. It would be a win-win solution. It would benefit
the Fiscal Management Control Board by focusing on low income areas and job
access routes while costing a small fraction of the recent late-night rail
service, and by showing that its goal was to provide better service, not just cut existing trips. But more importantly, it would benefit the traveling public, by
allowing passengers to make trips by transit to major job sites at all hours of
the day.
It would be important, as well, to run this plan with discrete goals in mind; while the late night service was painted as a failure by MassDOT, by comparing the ridership to the previous iteration of late night service, it was an unmitigated success. The T’s mitigation plans would add buses piecemeal to its early morning system with no specific performance metrics. Instead, it should look in to creating a better network with specific goals, and measure the efficacy of the system in providing better connections to people traveling at odd hours.

This plan is designed to be affordable and robust, serving
real needs across the region, responding to social and mobility equity, and
doing so without the need to turn to the private sector, which cannot and will
not offer similar service at such affordable costs. Should it work, it would
enable the MBTA to set a standard for quality 24/7 service—service which is
provided in Philadelphia, Seattle, Cleveland and Baltimore, not to mention peer cities like New York, Chicago and San Francisco—and the kind of
service a city and region like ours both needs and deserves.
Here are sample schedules, assuming a :30-past-the-hour pulse at Copley. Schedules are based on current early-AM service. These times would be repeated hourly at 1 a.m., 2 a.m., 3 a.m. and 4 a.m. daily and 5 a.m. Sunday. Each route would require one vehicle unless otherwise noted.
Ashmont-Andrew-Copley (15 Bus, Red Line Ashmont Branch)
Dep Ashmont Station 1:02
Andrew Station 1:17
Arr Copley 1:28
Dep Copley 1:35
Andrew Station 1:46
Arr Ashmont Station 2:00

Mattapan-Dudley-Copley (28 Bus, Silver Line Washington)
Dep Mattapan Station 1:03
Dudley Square 1:14
Arr Copley 1:25
Dep Copley 1:35
Dudley Square 1:46
Arr Mattapan Station 1:57
Hyde Park-Roslindale-Forest Hills-Longwood-Copley (32 Bus, 34 Bus, 39 Bus, Orange Line, 2 vehicles)
Dep Hyde Park 12:50
Forest Hills 1:04
Longwood Medical Area 1:16
Arr Copley 1:25
Dep Copley 1:35
Longwood Medical Area 1:44
Forest Hills 1:56
Hyde Park 2:10
Watertown-Brighton-Kenmore-Copley (57 Bus, Green Line)
Dep Watertown Square 1:02
Kenmore 1:19
Arr Copley 1:25
Dep Copley 1:35
Kenmore 1:41
Arr Watertown Square 1:58
Clarendon Hill-Davis-Harvard-Copley (Red Line Alewife, 87/88/89 Bus, 1 Bus)
Dep Clarendon Hill 1:03
Davis 1:06
Harvard 1:12
Arr Copley 1:25
Dep Copley 1:35
Harvard 1:48
Davis 1:54
Arr Clarendon Hill 1:57
Malden-Medford-Sullivan Square-Haymarket-Copley (Orange Line North, 101 Bus, 93 Bus, 2 vehicles)
Dep Malden 12:49
Medford 12:59
Sullivan Square 1:07
Haymarket 1:17
Arr Copley 1:25
Dep Copley 1:35
Haymarket 1:43
Sullivan Square 1:53 
Medford 2:01
Arr Malden 2:11
Broad & Ferry-Sullivan Square-Haymarket-Copley
Broad & Ferry 1:00
Sullivan Square 1:10
Haymarket 1:17 (express via Rutherford)
Arr Copley 1:25
Dep Copley 1:33
Haymarket 1:41
Sullivan Square 1:48 (express via Rutherford)
Arr Broad and Ferry 1:58
Wonderland-Chelsea-Airport (Blue Line, 111 bus, 117 bus)
Dep Wonderland 1:31
Chelsea 1:44
Arr Airport 1:55
Dep Airport 2:00
Chelsea 2:11
Arr Wonderland 2:26
Copley-South Station-Airport
Dep Copley 1:32
Arlington via Boylston 1:34
Washington via Boylston 1:35
South Station via Essex 1:38
Seaport 1:41
Terminal A 1:45
Terminal B 1:47
Terminal C 1:49
Terminal E 1:51
Arr Airport Station 1:55
Dep Airport Station 2:04
Terminal A 2:04
Terminal B 2:06
Terminal C 2:08
Terminal E 2:10
Seaport 2:14
South Station 2:18
Washington via Kneeland 2:21
St James via Charles 2:24
Arr Copley 2:27
Alternate Copley-Airport-Wonderland through service (2 vehicles; this would provide better connections downtown but may not serve airport shifts as well from Chelsea and Revere):
Dep Wonderland 12:38
Chelsea 12:53
Terminal A 1:06
Terminal E 1:12
South Station 1:19
Arr Copley 1:25
Dep Copley 1:35
South Station 1:41
Terminal A 1:48
Terminal E 1:54
Chelsea 2:07
Arr Wonderland 2:22

What is the actual capacity of BRT?

This is the second in a series about the ITDP bus rapid transit report for Boston, and the ITDP standard in general.

When proponents of Bus Rapid Transit—

You know what? I need to redefine this. I am a proponent of BRT. But I am a proponent of BRT in context. When the ITDP talks about transit, they only mention BRT. Heavy rail, light rail, commuter rail, these are seen as competition, and need to be denigrated whenever possible. BRT is the solution, anything else is not even worth mentioning. 

This is myopic. Bus rapid transit is a tool, but just a a tool box needs more than just a hammer, transit needs a variety of modes working together depending on a city’s existing infrastructure, needs and geography. BRT needs to be used where and when it is appropriate, but it is not a one-size-fits-all solution for every transit need. I’ve already discussed how BRT is not particularly compatible with narrow streets, and how the cities used as analogs to Boston are anything but. 

—So to begin again:

When propagandists of BRT (yup, I went there, ITDP) talk about the benefits of bus rapid transit, they don’t tell the whole story. Their argument is that bus rapid transit has the ability to transport as many people as any other mode (45,000 per hour!), at a fraction of the cost. In very isolated cases, this may be true. However, they don’t mention that this is an extreme outlier. The infrastructure required for that number takes up enough space that it is compatible only in urban areas with long, wide thoroughfares with space to build. Without this, capacities are an order of magnitude lower, and BRT is much harder to scale than rail.

Here is what the ITDP shows for capacities in people per direction per hour:

This is somewhere in the neighborhood of being true (it’s, shall we say, rosy), but it shows absolute maxima, which for BRT are often attained in conditions which, in most cities, are unworkable. (Let’s also set aside the fact that 6000 people per hour on a non-BRT bus system equates to 1 minute headways, that a four-track metro like the 6th Avenue Line in New York runs at a capacity of 60,000 per hour and theoretically could run at 100,000 and that light rail is capable of more than 20,000 passengers per hour in, for example, Calgary. So, it’s basically not true then; see below.) The BRT number is from Bogotá, and it is an outlier. The way that Bogotá attains that number is by having the BRT system in the center of a highway with wide stations and two lanes for buses on either side, necessitating about 70 feet of street width. This requires four bus lanes at stations, and the street width to accommodate that something many cities just don’t have.

Without this width, BRT carries many fewer people. Bus and rail transit scale in two very different ways. Imagine (or look at the chart to the right) a graph where the X axis is the route, and the Y axis is the width of the corridor or the number of lanes/tracks. Rail scales along the X axis, by adding vehicles to the train, so that going from one car to 10 cars gives ten times the capacity. However, adding a second track (increasing the Y axis) only doubles capacity, there are no similar economies of scale. BRT can only lengthen the vehicle so much; most BRT buses top out around 100 feet (carrying about 160 passengers). However, doubling the number of lanes a BRT uses increases capacity by 10 times (or even a bit more; the most frequent route in Bogotá has 350 vehicles an hour—a bus ever 10 seconds!). So while rail can scale by an order of magnitude within a narrow corridor, BRT scales best in another dimension. However, this requires four lanes of width, plus stations, to have the same increase in capacity.

This becomes an issue when capacity is an issue. For a line transporting 1000 or 2000 people an hour, rail is no better than bus: a single-car light rail train every 8 minutes has about the same capacity as a 60-foot bus every 4 minutes. (This is assuming they have similar signal priority, level boarding and fare collection mechanisms to minimize dwell times and unnecessary stops.) Both these frequencies are show-up-and-go frequencies; the average wait time for a three minute headway versus a six minute one is a negligible 120 seconds, a small percent of total trip time.

But if demand increases, a rail line can easily add capacity while a BRT system can not. Increase demand to 3000 people per hour, and a rail line will handle it fine: a two-car light rail train every seven minutes does the trick. However, a BRT system maxes out around 60 trips per hour, and even at this point, even a minor load imbalance (say, from connecting services) or a traffic light cycle missed (say, to allow pedestrians to cross*) will cause bunching. There are diminishing returns at very low headways as being slightly out of sync can cause bunching and crowding issues. There’s a reason the BRT line in Los Angeles (the Orange Line) has four minute headways, and not less. Beyond that, bunching, and accompanying diminishing returns, are inevitable.

[Update: Mexico City has more frequent service, it’s just that Google Maps transit doesn’t show that. Thanks, Google Maps! And I didn’t go in to the GTFS file to see what was going on, and it’s a somewhat complex file! So, Mexico’s BRT system has higher throughput, especially given their longer buses, maxing out around 12,000 per hour. Of course, with vehicles every minute at-grade, bunching is inevitable as crossing phases have to be a certain length on wide streets, so speed declines. It’s certainly faster than minibuses in mixed traffic, which the system replaced.]

Beyond 3000 people per hour? A two-lane bus system has problems; crowding will increase dwell times, and capacity or speed may actually go down. A light rail line will reach this point as well, but will be carrying many more passengers when it does so. Boston and San Francisco run 35 to 40 light rail trains per hour underground, with a capacity of 15,000 passengers per hour (Boston, with some three-car trains, actually has a slightly higher capacity). Calgary runs 27 three-car trains (with plans to increase to four) through downtown at rush hour, at-grade! 27 four-car trains will give it a capacity of 22,000 per hour. (Their system carries more than 300,000 riders per day, higher than Boston or San Francisco.) That’s on par with pretty much any BRT system (Bogotá’s is over capacity, and they are actively looking to build parallel lines to reduce the demand on the main trunk routes.), but the stations and track only take up about 40 feet of street width, enough for a lane of traffic and wide sidewalks in an 80-foot building-to-building downtown corridor, still narrower than any BRT street in Bogota.

In any case, the chart that the BRT report has should actually look something like this, accounting for typical loads and outliers:

Typical loads are lines such as the Broadway IRT for the four-track metro, the Red Line in Boston for the two-track metro, a single branch of the Green Line for the LRT, and the Orange Line in LA for BRT. I took a guess at the typical throughput of a four-lane BRT; I couldn’t find any specific schedule or loading data.

Maximum loads are theoretical maxima. For a four-track metro, this is double a two-track metro (the 6th Avenue line is the busiest trunk line in New York, running about 30 trains per hour with a capacity north of 60,000, but could carry more). For two-track metros, several are in the 40000 range: the Victoria and Central lines in London (33 trains per hour, 1150 passengers per train), and the L train in New York (20 trains per hour, 2200 passengers per train). For BRT, four lane, the number is from Bogota. For light rail, the number is from Calgary, assuming they implement four-car trains as scheduled this year. And for BRT, two lane, the number is from a single-lane, one minute headway system with 100-foot buses (which don’t exist in the US).

Two notes:

  1. Bogotá’s system is an outlier. Most BRT systems carry many fewer passengers, especially the majority of lines which do not have passing lanes at stations to increase their capacity. While light rail can scale dramatically, BRT can not, unless the streets are wide enough. Which, in Boston, they’re not.
  2. Four-lane BRT is akin to four-track metros in capacity enhancement (a four-track metro can carry, in theory, more than 100,000 passengers per hour). However, a four-track metro is only necessary in very high demand situations; most two-track metros can be scaled to meet demand. Four-lane BRT, however, is necessary even when demand is well below what a typical metro line, or even light rail line, might carry. 

Here’s another way to look at capacity. It shows how different transit modes attain capacity: rail by adding vehicles (and, to get very high frequency, extra tracks) and BRT by adding passing lanes and frequency. It also shows a dotted line at 60 trips per hour—a one minute headway. Most systems operate to the left of the dashed line. In the case of rail systems, this is because more capacity is generally not needed. In the case of BRT, however, it is because the system is operating near its maximum. In reality, the lines should curve flatter beyond 30 trips per hour (except for four-lane BRT) as bunching and load imbalances cause diminishing returns.

In any case, it’s another way to show that while BRT is a useful tool in the transit toolbox, it has a very finite capacity unless it can be expanded to four lanes (plus stations). If you are trying to design a system which can scale, you either need to have that corridor space available (as is the case in Bogotá), or build a rail line. Without that, bus rapid transit can carry about 2500 passengers per hour, but it can’t scale higher.

[ * A note on pedestrians: surface BRT is constrained by the length of crossing traffic light cycles. Even with full signal preemption, a crossing cycle needs to be long enough to clear crossing traffic, and for pedestrians to cross the street. In most cases, a BRT corridor will be wide enough to require 30 seconds of pedestrian crossing time. At 5 or 6 minute headways, this is not a problem; the BRT only requires 10 or 15 seconds every two to three minutes, or so. At three minute headways, it requires 15 seconds every 90 seconds, and at two minutes, 15 seconds every 60, and at a minute, BRT requires half of the signal time. It is likely that buses at this frequency would, at times, be forced to stop because of the length of the pedestrian phase (and to keep cross traffic flowing at all), which would create bunching and crowding problems downstream. Again, most single-lane BRT networks operate at four minute headways, which constrains capacity. Beyond that, they lose signal priority advantages, which constrains speed. In other words, there’s a fair argument that for surface transit, a three minute headway may be better than a one minute headway.]

The T’s bus maintenance costs are … generally in line with other large transit agencies

Shirley Leung, the Globe’s business columnist (and Olympics cheerleader) wrote a spurious article on Friday about MBTA privatization (we dissected that piece line-by-line here, and promised this longer post), where she leaned significantly on a recent study from the Pioneer Institute. Why Pioneer is taken seriously in regards to transportation is beyond me. Their numbers rarely stand up to the light of day, and when Very Serious Columnists are taking their analysis as gospel, it is a bad sign for the news media, and bad for local politics in general.

This post will look at some depth at the Pioneer Institute’s bus maintenance cost study, titled “The T’s Bus Maintenance Costs are Out of Control.” I’ve referenced the spurious “research” from the Pioneer Institute before, and mentioned this report; this is a full examination. Their assertion is that the T’s bus maintenance costs are “out of control”, some of the highest in the country, and that the T could save tens of millions of dollars a year if they just reformed how they maintain their bus fleet, asserting that their costs are twice as expensive as “peer agencies” (as defined by them, although we’ll see that their definition of “peer” is, well, suspect). There are numerous problems with this study and the numbers they use in it, to the point where their conclusions are drastically overstated and need to be fully reexamined. Since this is a very long post, I am going to break it in to two pieces: a shorter executive summary, and a larger jump deep in to the weeds of the data.

This post will discuss and dissect the following specious and disingenuous parts of the report:

  • The Pioneer Institute’s faulty definition of “peer agencies”; the metric they use to select agencies is one of few which by definition varies by agency policy.
  • Is “cost per revenue mile” the best metric for measuring the effectiveness of maintenance operations? Does a different number (cost per revenue hour) give us better data and better match how most bus operations account for bus costs, anyway?
  • Pioneer cites Minneapolis as a close analog. But they don’t account for dramatic differences in costs of living and maintenance facilities in the two cities.
  • Pioneer also digs in to the T’s salary database to pull out examples of highly-paid maintenance workers. Yet they look only at the top salaries, not at averages. This is simply hyperbole; their selective use of data serve not to inform people but to scare or anger them.
Overall, much of the supposed variation between the MBTA’s costs and other agencies that Pioneer cites are easily debunked, and they misuse data to misconstrue a problem to fit their agenda of privatization and overall cuts to transit. Instead of looking at appropriate data to try to see how the MBTA could best reign in costs, they use some of the worst data they can find to make hyperbolic statements. And when MBTA reform panels view these data as fact, they’ll make uninformed decisions.

In Brief: By Manipulating data, Pioneer Misrepresents Facts on the Ground

To make its case that the T’s costs are “out of control”, Pioneer first needs to find other agencies to compare the costs to. While there are many ways to use the National Transit Database to choose systems similar to the T, the Pioneer Institute takes an interesting approach. And I don’t mean interesting as in novel, I mean interesting as in suspect. The most logical idea would be to use a list of other large transit systems, but the Pioneer Institute uses miles between “failures” which the NTD explicitly points out in their definitions is subject to variation in agency policy.

By doing so, and by selecting agencies which carry one fifteenth as many passengers at MBTA buses alone (and in some cases as few as one fiftieth—or two percent—of the total number of passengers) they are really comparing apples to oranges. The T is being compared to sunbelt cities (no road salt, roads with less traffic and fewer acceleration and deceleration cycles) with many fewer passengers. These include systems which serve Palm Beach County, suburban Detroit and El Paso, for example, yet the report doesn’t compare the T to Philadelphia or Seattle, much better analogs. Comparing the T to its actual peers—other top-20 transit agencies—makes the costs go from 100% higher to just 40%. More than half of the supposed out of control costs are because of a false comparison.

The report also uses “revenue miles” while “revenue hours” would be a better metric. The T, which serves a compact, urban area, has a relatively high maintenance cost per revenue mile while its cost per revenue hour is more in line with other areas. It turns out that per hour (and many bus operation costs are per hour, not per mile) the T has some of the most efficient buses in the country, in the company of Chicago, San Francisco and New York, and far ahead of El Paso and Spokane. To put it another way: not all miles are created equally: a mile on the T will have more stops, more acceleration and more stress on the bus infrastructure, but also many more passengers.

Pioneer then cites Minneapolis as a good analog for the MBTA. While Minneapolis has a similar number of buses to the T, this analysis is somewhat fraught for a few reasons. First, Minneapolis carries only about half the bus passengers of the MBTA (and operates only a nascent rail system, so its overall transit ridership is only 20% of the T). Minneapolis also has much newer maintenance facilities (all have been built since the 1980s) as opposed to the T’s facilities, many of which date from the streetcar era. In addition, Minneapolis has the capacity to store nearly all of their vehicles indoors, a far cry from the T’s outdoor yards. Boston does have an advantage, however; it’s facilities are much more centrally-located, and it has only about half the deadhead requirements moving vehicles in and out of service that Minneapolis has, saving significant operating expenses.

Finally, Pioneer makes a hyperbolic statement about how highly-paid some T maintenance employees are, but it of course only cites the highest paid employees, and doesn’t look at any averages. The average worker is not paid in excess of $100,000; and the $70,000 maintenance salaries commanded by the skilled workers who keep the T’s rolling stock in place may be high, but are commensurate with the high cost of living. (House prices in Boston are twice what they are, for example, in Minneapolis.) The high salaries cited are due to overtime accrued (those lazy union members at it again, working 60 hour weeks), likely at times when many vehicles are in need of repairs to maintain service (the T has a relatively low spare ratio, so a problem which at another agency might be put off while a new bus is put in to service would have to be fixed at the MBTA). These cost differentials, and the fact that the MBTA has invested far less in capital facilities than Minneapolis (upgrading all of the T’s bus facilities would likely stretch beyond a billion dollars), bring the costs much closer together. Additionally, the T keeps a lower headcount (which saves on the number of benefited employees) and instead pays more overtime. This may actually save money, since for many employees the cost of benefits amounts to 30% or more of base salary, so having more employees working fewer hours may cost more.

Pioneer’s study is a textbook case of having an agenda and massaging data to best fit ones premonition. The problem is that under more scrutiny, the numbers mostly fall apart. The T’s maintenance costs are more expensive than several other large systems (although notably less than New York), and there are certainly lessons that we could learn from them. However, instead of beating the drum of the greedy unions and that privatization is the only answer, we should look at what works—and what doesn’t work—and how the T can take advantage of more efficient workplace and management practices. Relations between government and the T unions have never been warm, but specious threats based on hollow data and parroted time and again in the news media will not help the matter. And rather than trying to drive a wedge between management and the laborers, the T should give the unions a seat at the table: workers without the constant specter that their jobs may be outsourced are likely to be more productive, which may save money in the long run.

In Detail: The Numbers Behind the Curtain

What is a “Peer Agency” anyway?

In their report, the Pioneer Institute defines the “peer agencies” against which they compare the MBTA’s costs. Before we get in to exactly how they do so, below are three lists of cities (or in the case of larger statewide agencies, the city or region in which the agency operates). Two are what the Pioneer Institute used as their “peer agency” list. Which do you think is a better fit for the comparison against the T? (NB: I’ve colored systems which appear on two or more of the lists to show the amount of crossover between them.)

List A: List B: List C:
Washington, D.C.
Salt Lake City
San Jose (VTA)
Saint Petersburg
Baltimore (MTA)
New Jersey Transit
Orange County, Calif.
San Diego
Delaware Transit
Suburban Detroit
Palm Beach County
Suburban Chicago
Washington, D.C.
Salt Lake City
San Jose (VTA)
Saint Petersburg
San Francisco
Fort Worth
San Bernardino
Rochester, N.Y.
Providence (RIPTA)
El Paso
Washington, D.C.
Baltimore (MTA)
New Jersey Transit
San Francisco
New York City
Los Angeles
San Diego
Las Vegas
Any guesses?

List C is a list of the largest bus transit systems in the country by daily ridership. Lists A and B are the lists the Pioneer Institute uses. Does it make sense to compare the MBTA to cities like Spokane, Salt Lake City and Saint Petersburg? Or does it make more sense to use cities like Los Angeles, Philadelphia and Denver? I’d argue the latter. The Pioneer Institute, apparently, thinks the former. Note that of the Pioneer Institute’s two lists comprise 32 cities, of which just 8—25%—are among the top 20 transit systems. The MBTA, for comparison, is the 7th largest.

Before we go any further, let’s look at one piece of data for these lists:

Pioneer List A: Pioneer List B: Top 20 Agencies:
Mean Daily Ridership 157396 186315 483682
Median Daily Ridership 100596 67335 320815

They’re comparing apples to oranges! The average ridership for the top 20 bus agencies is 483,000. (The T carries 405,000 daily.) The average sizes of the agencies Pioneer is comparing the MBTA to are 32% and 39% as big. Looking at the median size (more important, actually, since Pioneer does not weight their averages), the median Pioneer agency is 16-25% as big as the T. Unless there’s a very good explanation as to why they chose these agencies, it seems that they weren’t chosen for a logical reason.

So, how did Pioneer define “Peer Agency”? They looked at two metrics for vehicle maintenance: miles between failures (List A) and miles between major mechanical failures (List B). Pioneer Institute took some lower bound for the size of a bus fleet or daily ridership (somewhere in the neighborhood of 100 buses or 25,000 daily riders; they don’t define this) and sorted it by the overall miles between mechanical failures metric (which they define as “maintenance productivity performance”) from the National Transit Database (NTD) to find the “most similar” agencies.

This is problematic for two reasons. First, choosing this lower bound means that they are going to be comparing a wide variety of systems very different from the T, as seen by the list above that includes several transit systems with one tenth or fewer the daily ridership of the MBTA. Six of the agencies have ridership under one tenth of the T—40,000—another 13 come in under 100,000, or less then a quarter the size of the T. This means that nearly half of the MBTA’s “peer agencies” carry 1/4 or fewer the number of passengers daily; few of these have interconnected rail systems either. One comparison, to Palm Beach Transit, is so risible that on a Sunday, the 28 bus in Boston carries more passengers than the entire Palm Beach transit system.

This is more of an issue, because it means that Boston is being compared to many cities which have far, far less transit service. Since the MBTA carries 2/3 of its passengers by rail (New York, DC and—believe it or not—Atlanta are the only other cities in the country with more rail riders than bus riders) it means that the MBTA carries fifty times as many passengers each day than the smallest “peer” agencies in cities where transit accounts for a tiny percentage of trips. I’m going to pause and say this again: the Pioneer Institute defines a “peer agency” as one which carries 2% as many passengers daily as the MBTA. That’s a rounding error! This is like trying to draw conclusions by comparing Starbucks and an independent coffee shop. It doesn’t make any sense.

Thus, most of these systems will have buses which operate in much different conditions than the T. They have longer distances between stops, far less acceleration and deceleration, fewer passengers per bus and much less time spent with crush-load capacities which put more strain on the vehicle’s physical infrastructure. In most cases, their routes often operate through less-dense city centers and not mainly as a feeder system for subway stations like the T does, with many fewer cycles between full and empty.

Second, and perhaps even more egregious, there’s the definition of system failures (italics mine):

(List A) Other Mechanical System Failure: A failure of some other mechanical element of the revenue vehicle that, because of local agency policy, prevents the revenue vehicle from completing a scheduled revenue trip or from starting the next scheduled revenue trip even though the vehicle is physically able to continue in revenue service. 

(List B) Major Mechanical System Failure: A failure of some mechanical element of the revenue vehicle that prevents the vehicle from completing a scheduled revenue trip or from starting the next scheduled revenue trip because actual movement is limited or because of safety concerns.

While most NTD numbers are rather concrete (“passenger miles traveled” or “revenue service hours”) these much more fungible based on different maintenance criteria for different agencies. Note especially that the first list is explicitly based on local agency policy. So, not only is Pioneer choosing cities with much smaller systems, but they are compounding this issue with a metric which varies by local agency policies! What’s more, some agencies, like the Maryland Transit Agency, don’t report “other mechanical system failures”, only major ones.

It would make sense to use a variable that is well-correlated for this analysis. Here are the r-squared values for agencies with at least 25,000 daily bus passengers:

  • Major failures and maintenance cost per revenue mile: 0.049
  • Other failures and maintenance cost per revenue mile: 0.018
  • Average weekday passengers and maintenance cost per revenue mile: 0.39

One of these things is not like the others. One of these things is correlated order of magnitude with the cost per mile than the others. And the numbers range more than one might expect: major failures range from every 1600 miles to once every 117,000 miles; and other failures, for agencies which report them, range from once every 2900 miles to once every 953,000 miles.

What might cause a bus to be removed from service in one system might not in another. There’s nothing wrong with that, but it makes it very suspect to use these numbers as a basis for further analysis, especially when better numbers certainly exist. It would make much more sense to choose the cities in the top 20 to compare to the MBTA. The problem is that such a list wouldn’t have supported the Pioneer Institute’s “conclusions” nearly as strongly.

Pioneer is measuring the “productivity” of a bus maintenance shop by the frequency with which the buses broke down without looking at any other data. This is like measuring the “productivity” of a doctor by the frequency with which his or her patients die. Which is all well and good—some doctors are actually more productive than others—except that a cardiologist is going to have more patients die than an optometrist, a gerontologist is going to have more patients die than a pediatrician, and a doctor that works in a high smoking state like  Kentucky is going to have more people die than someone working in Utah. If you’re not correcting for the age of the vehicle, variations in the kinds of vehicles used, and variations in the duty cycle, you’re going to come to some screwy conclusions.

I like charts, so here is one. It shows transit systems with more than 20,000 riders. Note how the Pioneer Institute’s “peer agencies” are mostly clustered in systems with much lower ridership than the MBTA. I threw in a best fit line for fun, and, yes, larger agencies have higher maintenance costs. Which is not surprising.

In any case, it comes down to a sort of Occam’s Razor question: the obvious definition of “peer agency” would be “other large transit systems.” Since that was not the metric used, we need to look in to why it was not. If there’s no good answer why it wasn’t—and there isn’t—then it certainly seems like the reason Pioneer used these criteria is to try to prop up their preconceived conclusion, rather than to make an honest argument.

I’ve only compiled the 2013 data (why? because I am doing this evenings and weekends and I don’t have a paid team of fellows and researchers funded by right-wing climate change deniers to go back through several years), but note the following:

Pioneer List A: Pioneer List B: Top 20 Agencies:
MBTA maintenance
cost % of average
208% 192% 153%

In other words, just by choosing a more representative data set, we’ve explained away half of the discrepancy between the T and other agencies.

But, wait, there’s more. Let’s say you only looked at the small group of agencies clustered near the T. There’s a big (50% increase) gap between Denver at 250,000, and Seattle, at 391,000, and another 50% gap between SEPTA and the CTA. If we compare Boston to Seattle, New Jersey, San Francisco, New York MTA Bus division and Philadelphia, the T averages just 140% of those other agencies, barely one third of the difference Pioneer’s “data” show. That seems like a much more representative sample than, say, Salt Lake, Sacramento, San Jose, Saint Petersburg and Spokane. I would wonder if the Pioneer Institute would deign to offer an explanation as to why they chose “peer agencies” in the manner that they did.

As I see it, there are three. One is that they randomly picked the metric to categorize this, and somehow stumbled on to the worst one they could since it’s really the only NTD data which varies by agency. I doubt this based on the Occam’s Razor principle that if you asked a student in a first year transportation statistics class what to use, they’d be hard-pressed to come up with what Pioneer did. The second is that someone doing research at Pioneer just isn’t that bright, and that’s a possibility. But the third is more nefarious: they came in to the study with a question they had a preconceived answer for, and then found the snippet of data which best supported their thesis. The problem is, well, the data.

Are all miles created equally?

Once the Pioneer Institute chose the wrong systems to compare the T to, they then chose to compare those systems based on a metric of “maintenance cost per mile.” On its face, this seems like a good analysis, and it’s not bad, but it ignores the issue that not every mile is created equally. For instance, which causes more wear and tear on a bus: a mile in stop-and-go traffic with a stop every 800 feet and 60 passengers on the bus, or a mile at 35 mph with two traffic lights and two passenger stops carrying 20 or 30 passengers?

Here’s another way to think about it: which is more stressful for your car? Driving with four passengers, a full trunk in stop-and-go traffic or a highway trip? The former is what buses in major cities are put through on a daily basis. But in many of the “peer systems” on the lists above, buses ply faster suburban arterials in much less dense areas. This means that they make fewer stops, and at those stops they pick up fewer people. That means less wear and tear on door mechanisms, air bags, transmissions, tires and even the vehicle frame. Wear and tear on a bus depends on its operational environment.

A better metric—one that accounts more for operational differences—would be maintenance cost per revenue hour. Bus costs are usually measured in hours (operators are paid by the hour, not the mile) and calculating revenue hours is a better way to account for different operating environments. For instance, a bus in City A might average 10 miles per hour and a bus in City B might average 15 mph. However the bus in City A might have more passengers over the course of that hour, more openings and closings of the doors, and a heavier average load. Cost per hour lets us better account for this.

So how does the T stack up on this basis? It’s still quite high, around $45.00, while the top 20 cities average to $30 and the Pioneer “peers” come out at $25. Instead of being 200% of its peers, the T is “only” 180%. So by using this metric, the T is still underperforming. However, there are more outliers in the same range. In the previous chart, the T was the only agency in the range of the New York systems; in this metric, it is joined by three others: VTA (Santa Clara County/San Jose), Pittsburgh and Detroit. Still, it is 50% higher than its peers, so there is some room for improvement. Perhaps Pioneer’s conclusions should not be “we need to privatize everything and eliminate the unions” but rather “let’s see what these other cities are doing and what we can do better.”

Is Minneapolis the right analog?

Much of Pioneer’s study focuses on comparing the MBTA to MetroTransit, the bus system in Minneapolis, Saint Paul and the surrounding area. After comparing the T to the two lists of 20 cities (one of which includes MetroTransit) the authors focus in on comparing the T to one such agency which is more like the T. (And in a stunning use of logic, they don’t choose, say, El Paso.) MetroTransit operates a similarly-sized fleet to the MBTA, and also operates in winter weather (which is not the case for many “peer agencies” above). So comparing the T to Minneapolis is not a bad choice.

But are there differences that probably account for a lot of the difference? Certainly. First of all, Minneapolis carries about 215,000 bus passengers, about half as many as Boston. The average trip is longer, as buses are the workhorse of the system (the two rail lines combine for only about 60,000 passengers per day), so there are fewer bus-rail transfers. But the number of trips per revenue mile in Minneapolis is still only 60% of Boston*—in fact, Boston has one of the highest number of trips per mile of any system in the country.

[ * This will probably be lower in coming years, as Minneapolis replaced one of its busiest bus lines—the 16 and 50, connecting downtown Minneapolis and Saint Paul and accounting for 10% of the total system ridership—with a light rail line in 2014. This has led to a significant overall increase in transit use (already nearing 2030 estimates with 36,000 daily riders), but an overall decrease in bus patronage and the number of passengers per bus. The 16 ran at 24 hour service and 10 minute headways at most times of day and was supplemented by the limited stop 50, especially at rush hours. Combined, they carried 24,000 passengers per day. ]

Pioneer examines several years of data (to their credit) and I’m looking just at 2013 (because this isn’t, you know, my job), so there are obviously fleet age questions, but when looking at a sample of this size (2 cities), there are all sorts of questions. Did numbers spike some years because many buses went out for mid-life overhaul? Were old buses give only very necessary maintenance in anticipation of retirement? Did new buses coming online require much less maintenance? I’m not sure how much difference this might make.

But what I do think makes a difference are two factors:

  • The Twin Cities have a much lower cost of living than Boston
  • While Boston uses a variety of maintenance yards, some of which date back well in to the streetcar era, the Twin Cities made large investments in large, modern and enclosed maintenance facilities.

Boston is an expensive place to live. Housing prices are skyrocketing and affordable housing is somewhat hard to come by. Working on buses requires the ability to commute to a maintenance facility, most of which are located in areas with high housing prices, and staff need to be paid accordingly. Minneapolis is far less expensive. Housing prices in the Twin Cities in 2014 were just 53% as high as in Boston, and the overall cost of living was 16% lower. Since personnel costs are a large part of maintenance costs, it is not surprising that it costs more to pay staff in Boston.

Then there’s the question of capital investment. One of the reasons the T is reluctant to add bus service is that it can’t expand its fleet. The number of buses is constrained by yard space, and new bus yards don’t come cheap. Recent discussions about rebuilding the bus yard at Arborway have quoted figures in the range of $200 to $250 million, and that’s one of more than half a dozen facilities the T operates. Rebuilding enough bus yards for the whole system would likely be a billion dollar project, or higher.

What’s more, the current locations of the T’s bus yards are worth a lot of money, and would help with the regional housing crunch. One sits at Arborway, and could be sold for $20 million (or leased to a developer as well)—and the city would also reap property taxes from a property which is currently untaxed. Another, Cabot, sits steps from the Seaport District and South Station, Albany is similarly situated in the South End, and the largest is the Charlestown Yard, in a decrepit-but-transit-rich part of Sullivan Square. So there’s the opportunity cost of not selling these off for development as well. But having well-located bus yards is an asset to the T, as it’s non-revenue (“deadhead”) mileage is some of the lowest of any large system (11%), it can’t afford to lose any facilities without replacing that capacity, and large plots of land in warehousing or industrial areas are not plentiful in Boston.

Minneapolis, on the other hand, has relatively new bus maintenance facilities. Every facility has been built since 1980. (And there are only six facilities, as opposed to the MBTA’s nine, lending economies of scale.) With lower land prices and much less density, most of the facilities are relatively centrally located, yet don’t take up valuable, transit-rich land. What’s more, every bus facility in Minneapolis is fully enclosed. In Boston, most bus facilities consist of an open yard with a maintenance garage. In the case of Arborway—one of the largest facilities—it is a small, temporary building. Buses are by and large stored outside. In Minneapolis, nearly all buses are stored inside. There’s adequate room to work, and the buses being stored don’t sit overnight in freezing temperatures.

Even still, the Twin Cities’s bus yards are not as centrally-located as Boston’s (T yards are often shoehorned in to small parcels; MetroTransit yards are usually larger and squarer). While Boston runs 11% of its mileage out of revenue service (deadhead), the Twin Cities run 24% (and as far as hours go, Boston is 9% deadhead and the Twin Cities 14% owing to a larger and less-crowded highway system in the Twin Cities). To access these newer, more efficient facilities requires significantly more operation expense. It would be as if the T built new bus facilities in Billerica, Southborough and Brockton: they’d likely be more efficient, but savings would be eaten up driving buses back and forth to and from them. Given the T’s salaries, if their garages were located such that they required 14% deadhead hours like the Twin Cities, it would add $5 million to annual operating costs.

That being said, MetroTransit has certainly invested money in vehicle maintenance facilities that the T has not. If the T had spent a billion dollars on a set of brand new bus maintenance facilities, it would likely spend less on maintaining its buses. Of course, if we assume that there is $1 billion in deferred facility capital outlay and that a bus maintenance facility has a useful life of 50 years, it would cost $20 million per year to build those facilities, money the T is currently spending on other projects. I’m not saying that this is a logical way to do business; the T should budget for and build adequate maintenance facilities. But comparing a system with new, enclosed facilities with the T’s antiquated mishmash of bus yards and small garages certainly needs some qualification.

The T’s maintenance budget runs $40 to $60 million ahead of MetroTransit each year. But, again, there’s much more to this than meets the eye. If the T required as many deadhead hours as MetroTransit, it would cost $5 million extra in operating costs just to get the buses to and from the garage. Given the difference in cost of living, the T’s salaries are higher than MetroTransit’s. If we only look at salary, the cost of living difference accounts for $6 million of that difference, and if we add in benefits it’s $11 million. And then, there’s the $10 to $20 million annually that the T hasn’t spent on new maintenance facilities. Better fleet renewal and capital outlay for maintenance facilities would probably help the T’s maintenance budget: maintenance is not siloed financially from the rest of the transit system’s operation.

In 2013 the T spent $104 million on vehicle maintenance to MetroTransit’s $45, so I’ll use those numbers. I will note that was a year before the T accepted a large order of New Flyer hybrid buses, which should require less maintenance than the 20-year-old RTS fleet they replace. In 2013 T’s bus fleet (average age: 9.4 years) was significantly older than MetroTransit’s (average age: 5.1 years). (I’m not even accounting for the lower capital costs the T has with an older fleet, although the fleet age obviously manifests as higher maintenance costs.) This could certainly be reanalyzed for other years; by using the year when MetroTransit had a much newer fleet, this probably paints the T in a worse light than is actually the case. According to Pioneer, during years in which the fleets for the MBTA and MetroTransit were similar ages, the T’s costs were only about double MetroTransit’s.

In any case:

Total Annual Expendeture $105m % of total
– Deadhead operation cost difference

– Cost of living difference (salary, salary+benefits)

– Facility construction







Adjusted total $69-$84m 66-80%
% of difference $21m-$36m 35-58%
† Adjusted total ($90m MBTA) $55m-$70m 22-39%
† % of difference ($90m MBTA) $20m-$35m 44-78%

† From 2006 to 2009, MBTA costs were about 200% of MetroTransit costs, and the bus fleets’ ages were similar. Assuming that if the T had a similarly-aged bus fleet to MetroTransit and double the costs, it would have a $90 million maintenance budget. If this is a good way to account for the fleet’s age difference, between 40 and 80% of the difference could be explained by deadhead operation expenses, cost of living and facilities.

Citing high salaries as a scare tactic

One of the favorite pastimes of the anti-union, anti-government folks is to find someone who works for the government and makes a lot of money and hold it up as an example of government waste (well, unless it’s a football coach; they’re fine with that). In their report, they go and find examples of people making a lot of money (a painter making $80,000! A machinist making $120,000! A car cleaner bringing home $70,000!) and use this to show how wasteful government is. But, of course, this is hyperbole. These are outliers: probably people who worked a lot of overtime—some 60 hour weeks—in order to make that much money. Since transit runs 24/7, there’s overtime to be had: a few extra buses break down, or someone calls sick and a worker picks up an extra shift. Are there some savings to be had from better oversight of overtime? Probably. But without showing the average numbers, these are pure scare tactics, a rhetorical device that doesn’t stand up to any scrutiny. Luckily, I have the T’s salary database sitting around (which is public record, of course), so we can do some such analysis.

Yes, all MBTA salaries are public information.
You can access the file here.

It’s unlikely the T will ever be able to use non-union employees, even if maintenance is privatized. Given the construction boom in Boston, these salaries do not seem far out of hand for union labor (union sheet metal workers, for example, make nearly $100 per hour, or $200,000 per year, although they don’t of course, have the job security a T worker does). Here are the base salary ranges for the major employment categories among the T’s bus maintenance personnel:

Fueler $34964 – $43014
Machinist $57262 – $77750
Car cleaner $60278
Painter/Carpenter $82035
Foreman $87672 – $100672
Sheet metal $89669
Pipefitter $94994
Wireperson $95617

On average, employees earned 119% of their 2015 base salaries in 2014. Why? As mentioned before, overtime. Could the T hire more employees and pay less overtime? Probably. But if they did, there’d be outcry from Pioneer about how even more workers were getting the platinum-level union compensation package and benefits. They want to privatize operations, and assure lower pay and benefits for everyone. Is that a way to treat public employees? I’m all for accountability, but it shouldn’t require these sort of threats.

To add it all together …

Pioneer’s top line statement—that the T could have saved $250 million in bus maintenance costs over 6 years—is specious. They massage and manipulate data, but it doesn’t stand up to any scrutiny. Does the T have some of the highest maintenance costs around? Yes, it does (although New York is higher still). Some of this is due to the operating environment, some is due to local costs of living, some is due to the lack of appropriate facilities and, yes, some may be due to the performance of MBTA employees. The T could probably reduce it’s overall maintenance expenditures with different management practices, but to insist that those are put in to place without any funding (for instance: to insist on better management while many repairs take place in outdated and/or temporary facilities) is just silly. To use blatantly and obviously manipulated numbers to make this argument is disingenuous, and, once examined, the Pioneer Institute’s argument falls apart. There is very little defense for this sort of sloppy “analysis,” and it certainly should not be relied upon to make policy changes.

Using several different—and more honest—metrics, we can explain away much of that difference:

  • 60% of the Pioneer Institute report’s difference in costs arise from their suspicious definition of “peer agency.” Of the $250 million that they claim the T could save, that accounts for $150 million of it.
  • Just by using maintenance cost per hour instead of maintenance cost per mile, the difference is 20% lower.
  • In comparison to the Twin Cities, we can explain 35% to 75% of the difference in costs between the two systems.
The Pioneer Institute had an agenda: to reduce the power of public employee unions and privatize all that they can. Their position may well be “why spend time and money figuring out how to reform our management when we can just outsource it and let the magic of free market competition figure all that out for us, via a contractor, now?” But without good data on other systems (Has any large system privatized and had major cost benefits? They don’t say.) this is a hollow sentiment. And the MBTA’s current contractors have been doing a less-than-stellar job of late: the publicly run subway operations recovered from the blizzards far more quickly than the private-contract Commuter Rail system.

Pioneer saw a well-compensated set of individuals, and tried to make a case that they are lazy, that they have a poor work ethic, and that compared to their peers in other cities, that they have poor work quality. It’s true that MBTA costs are higher than many other agencies, and the T could probably implement policies to bring costs down to some degree. Upon further examination, however, it is the “research” coming from the Pioneer Institute that is low quality, not the work of the maintenance department at the MBTA.

Bus Lanes on the Harvard Bridge

April was Bus Month here at Amateur Planner, and May is showing no signs of slowing down. I noticed recently that in a traffic jam on the Harvard Bridge (which occur regularly, especially during baseball season), there are not many buses on the bridge, but they carry a large portion of the people crossing it. So I waited for the next traffic jam on the bridge (not a long wait) and went to take a photograph, which I then annotated:

This was taken at the 250 Smoot marker (so about two thirds of the way to hell), and I noted that, in stopped traffic, there were 20 cars per 100 Smoots (this is a bit more than 25 feet per car; Smoot markers make it really easy to quickly measure things). I took a quick census of the number of people in each car (appeared to be about 1.3) and set about making the graphic above. (The bus numbers account for one at all-seated capacity, one at normal standing capacity, and one at crush load.)
Then I tweeted it, and it may have gotten retweeted a couple of times.
There was one bizarre (in my opinion—and I’m really not sure if it’s uninformed or malicious) response thread, which amounted to the following (as requested by the Tweeter, the full conversation is below):
This is where the bus does go. (1/4 and
1/2 mile buffers of MBTA bus routes.)
So, pretty much everywhere.

Responder: Plenty of people need to get where buses don’t go.
Me: I’m fine with them having one lane of the Harvard Bridge, and the buses go a *lot* of places; if they ran faster than cars, more people would take them.
Responder: So glad you’re not making the rules.
Me: Here are areas within 1/4 and 1/2 miles of bus routes, where again are people going that the buses don’t go? [See map at right.] And why should my tax $$ go to pay for buses to sit in traffic so cars can … sit in traffic? >50% of the people on the bridge are in buses. Why not give them 50% of the space?
Responder: It’s the when, not the where. Bus schedules don’t nec. match ppl’s schedules. RedSox fans all over NE. [editor’s note: see original Tweet in thread.]
Me: So if the buses were 15 minutes faster than driving, people would take them, and anyone who *drives* to Fenway deserves a dope slap. [There’s] plenty of parking at Alewife-Riverside-Wellington-Wonderland. Trains run every 5 mins. Why should 20k+ bus passengers be delayed 10 mins for a few Sox fans?
Responder: It’s about making connections too—when too many connections get inefficient, driving works.
Me: Driving works? Tell that to the people on that bridge: people were walking faster. Bus lanes means more people opt for transit, fewer cars overall, and less traffic.
Responder: Just because buses work for you doesn’t mean they work for all.
Me: That’s the problem. They don’t work. The deck is stacked in favor of driving. I’m not saying ban cars, I’m saying let’s equalize street real estate. Why shouldn’t a bus with 50 passengers have priority over a car with 1 or 2?

But this is the usual reactionary inability to see the greater good. Take away a lane from cars, and it’s an affront to driving. An affront to freedom. Un-American. Never mind the majority of people on that bridge aren’t driving cars. They don’t matter. Still, I haven’t heard this turned in to an equity argument, so that’s kind of groundbreaking.

So the first part of this blog post is a plea: Ms. Cahill, I want to know what goes through the mind of someone who can’t see that transit efficiency is a societal benefit, and that it will amount to more people using fewer vehicles. Please email me, comment here, and discuss. I want to know.

The second part is me, trying to quantify what would happen to vehicles displaced by a bus lane on the Harvard Bridge, and what the time savings would be for bus riders as opposed to the time penalties for drivers. And, as I am wont to do, I did this in chart form. I imagined a hypothetical traffic jam stretching across the bridge (0.4 miles) in a closed system where all of the cars feed off of Mass Ave on to the bridge (this is close to the case, but some traffic does enter from Memorial Drive):

At first glance, going from two lanes to one would double the length of roadway needed to store the same amount of cars. But several other factors come in to play. First of all, the buses take up the space of 8 cars—at least. Then, we can assume that 10% of the cars remaining will shift modes: if taking the bus is all of the sudden significantly faster than driving, people will use it. And people in taxis (by my estimation, 10% of the traffic on the bridge) will likely switch in greater numbers since they’re starting closer by: I estimated 50% mode switch there. Then there’s induced demand: make the traffic on Mass Ave worse, and some drivers—I said 10%—will choose another route, whether it’s the Longfellow or the BU Bridge or further afield.

Add these together, and I would guess that traffic would increase by between 1/3 and 1/2. Assuming that traffic moves at 5 mph, this would mean an increase of 2.5 to 4 minutes for each person in a car on the bridge. But it would also mean that buses would cross unencumbered by traffic, making the trip in one minute, and saving every bus passenger 7 (this assumes that the bus lanes extend back to Vassar Street, displacing bus stops and a few parking spaces on Mass Ave through MIT). With these numbers, drivers would incur 510 minutes of additional delay, but bus passengers would save nearly three times that much time—a dramatic benefit.

Am I way off base with these numbers? I don’t think so. When the Longfellow went from two lanes to one, vehicle traffic decreased by nearly half! Traffic spread to other locations, people chose other modes (walking, biking, transit), or didn’t make trips. The traffic apocalypse that was predicted didn’t materialize, and life has gone on.

The Harvard Bridge is one of the most heavily-traveled bus corridors in the city, up there with the North Washington Bridge, the Silver Line on Washington Street, the 39/66 concurrency on South Huntington, portions of Blue Hill Avenue, some streets to Dudley and the feeder buses to Forest Hills. (All of these should have bus lanes, by the way.) The 1 and CT1 combine for more than 15,000 trips per day and, at rush hour, better than one bus every 6 minutes. The bridge also carries the heavily-traveled M2 MASCO shuttle 6 times per hour. Combined, these routes account for a full (usually crush-load) bus every three minutes—which is why in a 10 or 12 minute traffic jam there are three or four buses on the bridge at any given time—transporting at least 1000 passengers per hour.

Bus lanes would allow these bus lines to operate more reliably, more efficiently and more quickly, meaning the same number of buses could run more trips, and carry more people. Which, if they’re 10 minutes faster than cars, they’re going to be carrying! This would be something that could be tested and quantified, and it could be done as a temporary pilot with cones and paint. There is no parking to worry about, no bus stops to relocate: just set aside one lane for buses (and give buses signal priority at either end of the bridge). This would take the cooperation of MassDOT, DCR, Boston and Cambridge—and prioritize “those people” riding transit over real, taxpaying non-socialist Americans—so I don’t expect it to happen any time soon.