MBTA’s Belmont cost estimates are way out of line

Belmont might be getting a new Commuter Rail station. This is not a good thing. Why? Because the T is proposing to create a new parking-oriented station which is within walking distance of far fewer customers than the current stations, and then close those stations.

Really.

In 2012, the MBTA performed enough maintenance on the platforms at Waverley Square that it required them to bring the station in to compliance with the Americans with Disabilities act. The problem? The station was built in 1952 when the grade separation there was built (the second-to-last of the B&M’s grade separation investments; Winchester was the last) and is in a deep trench, with 20 feet of steps separating the railroad from the roadway.

Now, if a sensible organization were in charge, they’d spec a new station at Waverley accessed by ramps from the street above, full-length, high-level platforms, and build a new station. On the south (inbound) side, there is plenty of room for a ramp from street level to the platform (especially since with a four-foot-high platform, you only need to descend 20 feet). The width of the south side of the station is about 200 feet, so it’s a single-zig ramp to get up and down with about three landings on each. The right-of-way, which held three tracks until the grade separation, is 100 feet wide, so the north side (outbound) platform could be accessed by a ramp to the east of the station to a rebuilt platform, with the current stairwell providing access from the narrow part of the triangle. Alternatively, platforms could be moved to the east of the station where the line is straighter, and the current station area used for vertical circulation.

In Belmont Center, the solution is easier. It would be hard to build new platforms at the current station location, which is located on a curve and would necessitate a Yawkey-style double-platform solution: a costly endeavor. However, just east of station the tracks straighten out and the right-of-way is 84 feet wide, plenty for a pair of platforms and two tracks. The north side of the station would be accessible with a ramp in place of a short staircase and a short ramp to a high level platform, which could be build to the east of the current platform. The south side would require a longer series of ramps, probably just east of the station. But again, this is not insurmountable.

But what does the T want to do? The T wants to close both stops and build a new station in between. This new station would be within walking distance of fewer residents, and much further from the downtown employment areas at Belmont and Waverley (as well as McLean Hospital, the largest employer in the town). It would have a parking lot, so a lot of people who currently walk to the train station would have to drive. It would sever connections between the bus lines which serve Belmont and Waverley and the train station. (Do you live in Waltham and work at Mount Auburn Hospital? Say goodbye to your rail-bus commute, you’ll have to take the train in to Porter, the Red Line to Harvard, and the bus out.)

Does this make any sense? If you’re a Belmont resident, it does not. Apparently, if you’re the MBTA, it does.

Here is a quick table of the current stations and their catchment areas (defined as the total population of all census blocks all of part of which are within 0.5 miles of the station location):

Belmont (current): 4311
Waverley (current): 7452
Proposed location: 7019

So not only does the proposed location serve far fewer residents than the current two stations, it actually serves fewer residents than the currently Waverley Square station!

How does the T justify this farce of a plan? The same way the justified killing the Red-Blue connector: by wildly inflating the cost of the plan they don’t want (bringing the current stations in to compliance) and giving few if any details about the costs of what they want to build. Their estimated cost for rebuilding each of the Belmont stations? $35 million (well, they’ve now come down to $16 to $30 million). Their number for a new station? They can’t say, but think it will be less. This is so entirely disingenuous it knocks my socks off.

Let’s look at some data to see how far off these numbers are, looking at some recent station construction for MBTA stations with full, high-level platforms and note whether it was a rebuild or a new station and the type of vertical circulation:

Yawkey Station (Worcester Line), 2014: $13.5 million
Existing station. built on a curve, in a narrow corridor, required track realignment, and elevators.

Boston Landing (Worcester Line), 2016, $20 million
New Station, ramps

Newmarket Station (Fairmount Line), 2013, $12.3 million
New Station, ramps.

Uphams Corner (Fairmount Line), 2007, $7 million
Existing station, ramps.

Four Corners/Geneva (Fairmount Line), 2013, $17.7 million
New station, ramps.


Talbot Ave (Fairmount Line), 2013, $15.9 million
New station, project cost included a new bridge, ramps.

Morton Street (Fairmount Line), 2006, $6.5 million
Existing station, ramps.

Blue Hill Ave (Fairmount Line), 2017, $10 million
New station, center platform, ramps.

South Acton (Fitchburg Line), 2015, $9.6 million
Existing station, elevators. The T is willing to flat-out lie about the construction costs by including land acquisition costs, which are not an issue for either station here, considering the 100-foot right-of-way.

Littleton (Fitchburg Line), 2014, $8 million
Existing station, center platform ramps.

So let’s review. Existing stations upgraded to full high level platforms built in the last 10 years have ranged in cost from $6.5 million to $13.5 million, with an average cost of $8.9 million. New stations built with full high levels have ranged from $10 million to $20 million, with an average cost of $15.1 million (the ones with elevators cost more, and elevators have higher maintenance costs). So the T is being disingenuous in two dimensions. First, upgrading the two existing stations, based on these averages, would cost only slightly more than building a new station. And secondly, recent experience shows the price would be nowhere near $35 million dollars for each station. Not even in the ballpark!

In fact, the T’s own planning documents admit this and quotes a cost of $15–$18 million for stations with side platforms (double the cost of recent station rebuilds, but still nowhere near the $35 million figure) and $22–$30 for (new) center platform stations (based on the cost of the Boston Landing station, although Blue Hill Ave is center platform and half the cost of Boston Landing). So while this planning document inflates the cost of upgrading stations, it still doesn’t get it to the $35 million level. And the claims that new stations cost more than rebuilding existing stations are just wrong.

Now, the T will claim that the new station is needed because the current stations are underutilized. This is hokum. The current stations are underutilized for two very good reasons: frequency and fare policy. First, frequency:

Inbound:
Waverley: 9 departures, 3 peak, 2 reverse commute, 4 off-peak
Belmont: 14 departures, 4 peak, 2 reverse commute, 8 off-peak
Outbound:
Waverley: 12 departures, 4 peak,  2 reverse commute, 6 off-peak
Belmont: 13 departures, 4 peak, 2 reverse commute, 7 off-peak

If you’re in Waverley and you don’t need to get to North Station at a very specific time, it’s better to take the 73 bus to Harvard and the Red Line. The 19 minute travel time is half of the bus-subway route, but it only runs once an hour. In Belmont, you have a few more choices and fewer buses, but there’s still no frequency. Schedules are uneven, and some midday trains skip the stations. Departures should be rationalized once the line has full double-tracking, but the stations won’t attract more passenger without more service. Building a different station won’t help.

Then there’s the fares. A trip on the bus and subway from Belmont to downtown costs you $2.10, or $75 for a monthly pass. A train ticket? That comes at $5.75, or $182 for the month, nearly triple the cost. This is a longer discussion about T fare policy, but it doesn’t help drive ridership in Belmont. Still, neither is an argument to build a station which will serve fewer people. (And, no, a new station won’t be an express stop: the “super express” from South Acton doesn’t even stop at Waltham.)

So what’s going on here? I’m not sure if it’s a question of incompetence or something more nefarious. But it seems to be in line with a lot of what goes on with a lot of Massachusetts infrastructure projects: create an agenda (single station in Belmont), create a plan that is unpalatable to the community (less access, more traffic) and make up costs so that your agenda compares so favorably that it is the only logical option. Then advance it far enough that it’s illogical to turn back. We saw this with Red-Blue connector, which has cost estimates the Globe has called “deliberately high.” We’ve seen it in Allston, where this page has argued that the state is pursuing a far more expensive plan by being immovable on project guidelines and refusing to fully vet better alternatives (although there is some progress being made). Unfortunately, this Belmont “plan” fits the pattern all too well.

What should we do? Contact your legislator, especially if you live in or near Belmont. Go to meetings. Raise your voice. And let the T know that they can’t get away with further degrading Commuter Rail service by making up numbers.

Part 2 takes a deeper look at these numbers, and finds them to be no less made up.

Something is very wrong with MBTA project procurement

When the news broke about the escalating costs of the MBTA’s Green Line extension to Medford and Somerville, I can’t say I was surprised, but the cost numbers have now escalated in to absurdity. I’m not an expert in the bizarre project procurement, but the costs are now to the point where the project really should be reviewed and rebid, even if there is a delay. It is far beyond what similar projects cost in other cities, and the project procurement team at the T should be removed to allow someone from the outside to bid the project.

How ridiculous are the T’s numbers? Let’s take a look at them, and compare them with some other projects:

Minneapolis-Saint Paul Green Line
Distance: 11 miles
Cost: $957 million
Cost per mile: $87 million
Completion date: 2014
Engineering difficulties: rebuilding bridge over Mississippi River for light rail, rebuilding the entirety of University Ave lot line-to-lot line, junction and flyover with existing Blue Line in Minneapolis. Likely cheaper than the Green Line extension. But not 9 times cheaper.

Los Angeles Expo Line Phase II
Distance: 6.6 miles
Cost: $1.5 billion
Cost per mile: $227 million
Completion date: 2016
Engineering difficulties: Several grade separations, parallel bike/walk facility. Still four times cheaper than the GLX.

San Francisco Central Subway
Distance: 1.7 miles
Cost: $1.6 billion
Cost per mile: $941 million
Completion date: 2019
Engineering difficulties: full deep bore tunnel in a seismically active area with three underground stations. In a rather expensive city to work in. And barely more than the GLX, which is being constructed in a grade-separated right of way!

Seattle University Link
Distance: 3.1 miles
Cost: $1.9 billion
Cost per mile: $613 million
Completion date: 2016
Engineering difficulties: full deep bore tunnel below the water table in a seismically active area with two underground stations. And quite a bit cheaper per mile than GLX.

Now, here are two MBTA projects:

Red-Blue Connector
Distance: 1300 feet
Cost: $750 million
Cost per mile: $3 billion
Completion date: ???
Engineering difficulties: Cut and cover tunneling below the water table in a constrained corridor. Certainly no greater than building the Central Subway in San Francisco, yet somehow three times more expensive. This should probably be in the lower end of the $100 to $200 million range, not three quarters of a billion.

Green Line Extension
Distance: 4.3 miles
Cost: $3 billion
Cost per mile $700 million
Completion date: 2019?
Engineering difficulties: Relocating existing parallel commuter rail line, building a flying junction, parallel bike/walk facility.

Here’s the thing: none of the engineering challenges faced by the GLX and RBC are unique (flying junction in Minneapolis, parallel path in LA) or insurmountable, yet the costs are an order of magnitude greater than in other cities. The Green Line Extension is between three and nine (!) times more expensive than similar light rail lines, and more expensive than new light rail lines which are being built using deep bore tunneling techniques, which are not cheap. High construction costs? Seattle and San Francisco have pretty high construction costs and labor wages too. The remaining GLX construction should be rebid mimicking the processes used in these cities with a new team at MassDOT, and if costs aren’t cleaved significantly, there should be a full investigation as to why.

The for the Red-Blue connector, which everyone agrees is a very important link, somehow costs three to four times what much more complex projects cost in Seattle and Los Angeles (while the Blue Line uses heavy rail equipment, it is the same diameter as light rail trains). The project is only 1500 feet long, doesn’t require a deep bored tunnel, and has only one station at Charles, and the headhouse there already exists with provisions to connect it to the Blue Line. The fact that it costs $2.6 billion dollars per mile is laughable. For the cost of one mile of construction in Boston, Minneapolis could build 30 (!) miles of light rail, and Seattle four miles of deep bore tunnel (about what you’d need for the North South Rail Link) and at a cheaper rate per mile than the Green Line Extension. It’s not even in the ballpark of reality, and whoever at MassDOT comes up with these numbers needs to be sent out to pasture.

There is no logical reason why a project in Boston should cost triple—or more—what a similar project costs in another city. $2 billion was suspiciously high. $3 billion means that a lot of people are on the take, or that money is being pissed away. I’m all for transit expansion, but not at these prices. An outside manager is a good start. But this has been a problem for a long time, and the T’s project procurement staff has shown no ability to do their jobs. Get rid of them.

This is correctable. It needs to be corrected.

Poor transit planning: an example that proves the rule

One of the most infuriating things about transit planning is when an agency does something which is designed to cause delays and for which there is an obvious solution. Customers have some understanding about things that are beyond the railroad’s direct control: trespassing, downed trees, even (to an extent) equipment, track or signal failures (although these are more preventable). But when your bus or train takes longer than necessary because of a stupid decision by the transit operator, it is far more maddening. These would include things like fare policy (the front-door boarding on the Green Line, which causes completely unnecessary delays for passengers). But that comes in relatively small doses, and it’s hard to compute.

A far more concrete example is what happens late every morning on the Haverhill Line. Starting this week, all midday service between Haverhill and Boston has been sent via the Lowell Line to allow for track work on the southern section of the line. What the T did is to take all of the scheduled Haverhill trains and run them express via the Wildcat between Ballardvale and North Station. They maintain their original arrival times, but by running express via faster trackage should arrive at North Station 15 minutes early, so the arrival time is schedule padding. Except in the case of one train, 210, which will arrive late every day, because of a scheduled conflicting move.
210 leaves Haverhill at 9:05 and is scheduled in to Ballardvale at 9:29 before its express trip to Boston. Amtrak’s first northbound Downeaster leaves Boston at 9:05, Woburn at 9:23 and Haverhill at 9:53. During normal operations, this works fine: 210 clears Wilmington Junction staying on the Western Route (the track towards North Wilmington) around 9:30, and Amtrak approaches northbound on the Wildcat a few minutes later. With the schedule change, however, Amtrak takes precedence on the extended single track, from Wilmington all the way past Andover, a distance of 8 miles (there is a double-track project in the area which will mitigate this issue; it is proceeding at a decidedly glacial pace). So the commuter train has to sit there for 15 to 20 minutes waiting for Amtrak to pass. Every single day.
But there’s an easy fix to this: the commuter train could leave Haverhill 15 minutes later. There are no schedule conflicts, no track conflicts: the train runs 15 minutes later, approaches the single track at Andover just as the northbound Downeaster gets on to the double track, and proceeds in to Boston. Everyone on the train has a ride that’s 15 minutes shorter. Everyone is happy.
I’m sure the argument against this would be something like “people are used to the train showing up at a certain time and we don’t want to change the schedule on them.” This is why you have a schedule change. The train would be moved later. A few people who don’t pay any attention will wind up waiting 15 minutes at their station the first day. Some of them might consult a schedule posted there and realize that the schedule was changed, and not come 15 minutes later the next day. No one will miss the train, only a few people would have a longer wait. Which they are going to have anyway, because nine days out of ten the train is going to be held for conflicting traffic (unless the Downeaster is delayed significantly, and it’s been running on schedule more frequently recently).
Plus, the current delays will lull passengers at Andover and Ballardvale in to thinking the train will always be 15 to 20 minutes late, so they’ll start showing up then anyway (Pavlov’s dog, etc). Then, on the one day that the track is open and the train operates on schedule, people will be left behind (at least 212 operates rather shortly thereafter). So by not changing the schedule to reflect reality, the following occurs:
  • All passengers from Lawrence north have a 15 to 20 minute on-train delay every day north of Andover.
  • All passengers at Andover and Ballardvale have a 15 to 20 minute on-platform delay.
  • On the occasion that the train operates on schedule, any passengers who decide to come at the actual usual arrival time at Andover and Ballardvale run the risk of missing the train, although they may decide that the 15 minutes saved most days make up for the 40 minute delay once a week.
Pushing the departures back 15 minutes would solve all of these problems, and give passengers a very fast trip in to Boston express from Ballardvale. So why doesn’t this happen? Perhaps institutional inertia. Perhaps incompetence. Maybe the T doesn’t even want people to get used to a faster trip when the trains are shifted back to the local schedule in a few months. But it’s a sad state of affairs when the T and Keolis decide that a 20 minute delay is acceptable—every day—and the passengers are the ones who pay. 
And then they wonder why the passengers lose all faith in the transit providers. This is why.

A quick look at the T’s privatization bus list

If you follow this page, you’ll know that I’ve gone on in the past about hyperbole about MBTA privatization. And today, with the list of routes out that are up for bid, a few comments. The idea, apparently, is to reallocate the resources from these routes to core services, so that there will be an increase in service by covering these few routes with other vehicles (the T can’t buy any more vehicles because it is out of room to store and maintain buses), except for late night. The T breaks it down in to three groups—low ridership local routes, express buses (most but not all) and late night routes—but I’d split the first group further in to routes under 200 (core MBTA service routes originally run by the MTA) and routes numbered above 200 (peripheral or suburban routes run by other providers).

If this is as far as privatization goes, it seems to make sense, especially reallocating the service hours and vehicles of large buses being used on low volume routes to other routes and times of day. The T shouldn’t spend time and money to maintain smaller vehicles, and for the few routes where smaller vehicles would work, as long as this expands service rather than replacing it (i.e., the buses are put to better use on other routes) it will help service and ridership. The fear, of course, is that in the long run the number of Carmen-operated 40-foot buses goes down, with, perhaps, a deterioration of service. I’m less sure about the express buses, where I think the idea might be to use coach-style buses for these trips, see below.

A couple of resources:
The 2014 MBTA Blue Book
Changes to transit service since 1964
Miles on the MBTA (a kid—a rising sophomore now?—who had ridden nearly every route the T operates, which is impressive)

Note: service hours are estimated, as are riders per hour and riders per trip. Ridership is from the Blue Book, cost is net cost from a separate spreadsheet from the T.

Core Routes


5. The 5 is a social service route; it completely duplicates the 10 except for the stretch along the McCormack Housing Project which would not have service during the midday. It operates with few passengers, most of whom could probably take the 10. (It’s not as bad as the 48, but similar.) It could be operated with smaller buses, easily, which would probably yield cost savings.
6.5 service hours per day
161 riders, 25 riders per service hour, or 12 per trip.
$0.91/passenger mile

18. The 18 is a local route that runs on Dot Ave from Andrew to Ashmont. Because it runs roughly parallel to the Red Line on 30 to 60 minute headways, most people would opt for the Red Line. So it is likely used for short hops by people unable to walk as far. It is likely similar to the 5 in that is is more a social service route than anything else, and could also be operated with smaller vehicles.
17 service hours per day
619 riders, 36 riders per service hour, 18 riders per trip
$0.65/passenger mile

68. The 68 is a lot like the 18: it parallels the Red Line, has few passengers and rarely-if-ever a full bus (except when the Red Line has a fault, but it is doubtful that enough people know about it to use it) and has the main purpose of getting people between Kendall, Harvard, Cambridge city offices and the library. Nearly all of its functions are duplicated elsewhere, and it didn’t even run between 1981 and 1998. It, too, could be operated with smaller buses to carry the passengers necessary, and the bus used for the 68 could be pressed in to service on Mass Ave where it would carry far more passengers.
12 service hours per day
468 riders, 39 riders per hour, 20 riders per trip
$1.00/passenger mile

99.  This one is harder to explain. The 99 is a subway feeder trip, and at rush hour runs every 20 minutes, which leads me to believe that if it has two or three heavy Orange Line trains empty on to it, it will need a full-sized bus. It’s not a route like the 5, 18, or 68: it has a purpose other than shortening a walk slightly for a few people. It has more than the ridership of those three routes combined. Could it be better integrated with the 106 to provide even headways where they share a route? Certainly. But other than cheaper operators, I don’t see how you get away with operating this with smaller buses.
30 service hours per day
1555 riders, 52 riders per service hour, 26 riders per trip
$0.49/passenger mile

201/202. These are two variations of what was Route 20 from Neponset to Fields Corner. The two trips now combine to run every 15 minutes (or so) on a variety of routes. The route is short and it seems that it has relatively low ridership per bus but high frequency; and most people who would take it instead walk to the Red Line (a station at Neponset on the Braintree Branch would obviate much of the need for the route). Depending on rush hour loads, smaller buses may suffice.
72 (?) service hours per day
1339 riders, 19 riders per hour, 9 riders per trip
$n/a

Suburban routes

52. The 52 is an old M&B Route through Newton on Centre Street in Newton and through to the Dedham Mall. It has minimal rush hour feeder ridership since it traverses a not-so-dense part of Newton and most people can walk to the 57 or Green Line or Express bus instead. Whether its ridership merits a smaller bus depends on the loading at different times of day.
17 service hours per day
766 riders per day, 30 riders per hour, 23 riders per trip
$0.49/passenger mile

70A. This is really interesting. The 70 is not listed, because it’s a busy trunk route which could never have smaller buses. However, it is one of the most dysfunctional routes the T runs because … of the 70A! I’ve advocated in the past for splitting the 70A off as a feeder or transfer route to the 70. So in theory this would accomplish exactly that; I would assume that the privatized portion of the route (the 70A) will not run all the way in to Cambridge; otherwise you’ll have even less coordination between the two mostly-parallel routes with different operators. (If the T does do this, they should all be sacked.) I still think interlining the route with the 556 makes as much, or more, sense, but splitting the 70A off of the 70 could be very beneficial.

I have no idea what the 70A portion of the ridership is as it is not broken out in the Blue Book. But if the current two buses were allocated to the 70, it could provide 8 to 10 minute headways at rush hour and 15 minute headways midday, allowing it to provide a Key Route level of service, with even headways (something it does not do right now) and alleviating chronic crowding along the route. This could be a major bright spot in this privatization scheme, if implemented properly.

210 and 212 are two local routes in Quincy and Dorchester that parallel the Red Line, although they provide frequent feeder service at rush hour. The 212 is a slight variant and only runs a few trips at rush hour, and has far higher ridership per bus/trip than the 210, which has ridership spread more across the day. Since 212 is a feeder, it may require larger vehicles to cope with rush hour crowding, although 210 is more a Red Line parallel route (although it does provide direct service from Quincy to Dorchester that would otherwise require a transfer).
26 service hours per day (21: 210; 5: 212)
210: 736 riders per day, 35 riders per hour, 18 riders per trip, $0.31/pax/mi
212: 293 riders per day, 59 riders per hour, 30 riders per trip, $0.89/pax/mi

439. This is a great candidate for a smaller bus. It carries 97 riders all day, but is the only service to Nahant; it is one of few cases in the area where a town has transit service at rush hour and not at any other time of the day. Even assuming that all riders go inbound on two trips and outbound on the others, (a fair assumption) this is little more than a feeder to the Lynn Commuter Rail station (and a couple of trips to Wonderland) with 20 riders per trip, which could be handled by a smaller vehicle, and this bus could be put to better use.
6 service hours per day
97 riders, 16 riders per hour, 8 riders per trip.
$1.83/pax/mi

451. Way out in the suburbs, this is a bus that is a Commuter Rail feeder to Salem, running at rush hours to and from Beverly. It also provides last-mile service between the Commuter Rail station and the Cummings Center. It could probably be operated with smaller vehicles.
9 service hours per day
163 riders, 18 riders per hour, 10 riders per trip
$0.89/pax/mi

465. Most of the time, this bus runs between Salem and the North Shore and Liberty Tree malls (and you know how I feel about buses to malls; maybe the mall should pay for it). At rush hour, however, it operates like the 451, with more direct service to and from the train station. In fact, during the PM rush hour, passengers to the mall ride the commuter trip first, and can then stay on for the inbound which loops back to the mall. Which actually makes sense. Still, it has relatively low ridership, and a smaller bus may suffice. For a time, the 451 and 465 were through-routed, allowing one-seat rider from Beverly to the malls.
20 service hours per day
414 riders, 21 riders per hour, 16 riders per trip.
$0.65/pax/mi

Express bus routes


I’m a bit more perplexed about the express routes shown. The 500-series routes to Newton, for example, are heavily used (often standing room only on 40′ transit buses) and operate frequently: the type of service transit buses excel at. The same goes for the Medford buses (320 series). The 505, for example, operates 20 inbound trips with 556 inbound riders, meaning that the average load is 28 riders per bus, but this includes a few trips in the 6 and 9 o’clock hours, so at peak times—when the bus runs every 9 minutes—the buses are full. And the bus runs like a city bus from Waltham to West Newton, so a low-floor transit bus is far superior to a high-floor commuter coach. (Many transit agencies do operate coach-style bus service, but it is usually from a park and ride to downtown, which Commuter Rail provides in Boston.) The 502 and 504 provide similar service and frequencies. So in this case you’d need a 40-foot bus, so I’m not sure what the savings would be, unless the successful bidder ran a feeder system to frequent rail service on the Worcester Line that could bypass traffic.

The costs per passenger mile for these express buses ranges from $0.17 to $0.32, with higher fares and longer distances.

The 351 makes a lot more sense, in theory. It is an outbound express bus from Alewife to Burlington and carries about 20 passengers on each of its four trips, some of which may serve as pull-outs for other routes. It also serves an area akin to those served by several of the 128 Business Council‘s shuttles, which serve similar office parks with similar schedules, in areas which otherwise have little if any transit service. It is a good example of a private service that leverages the existing transit network (rather than competing with it) in an area which would likely be hard for the T to justify serving. (Full disclosure, I work for another TMA which operates last-mile shuttles.)

But the issue with the 351 is that it might not operate in a vacuum: some of its trips may be a pullout which then turns as a 350 or a 352. The 352 is also on the list, and I would assume that these would be sold as a package deal. Similarly, it’s not surprising to not see the 170 bus because it serves basically as a revenue pull-out trip for 70 buses. (Although a later trip for the 170 during each rush hour would dramatically help that service; perhaps some of the 70A’s resources could go towards that.) This is the issue with trying to privatize parts of a network: you often wind up pulling on a string and unraveling the whole sweater. These seem to be surgical enough that they won’t dramatically affect it, but—to mix metaphors—it could be a slippery slope.

It will be interesting to see what kind of response the T gets. The union doesn’t seem keen on letting anything out of their grasp, and there would be some perceived risk in operating a trip privately and not running afoul of the Carmen. Unlike the lead-up to Pacheco, there are no proposals to privatize an entire garage, but rather a few small routes. It’s less likely to ruffle a lot of feathers, but the slippery slope argument holds. First they came for the 68, and I said nothing, because I did not drive the 68. Will they then come for the 28 or the 66?

It will be interesting.

How the North South Rail Link could work

North South Rail Link schematic showing current train volumes for Commuter Rail
lines, potential future RER-style connections and new and existing stations.

Discussion about the North South Rail Link has bubbled up again, with Mike Dukakis and Bill Weld writing in the Globe about how it should be a priority, Commonwealth magazine calling them out on where the money would come from, and Dukakis replying that if you wanted to find the money, you certainly could. A thread started on Universal Hub with a lot of people wondering how the rail link would function. Here are my thoughts/explanations.

Efficiency. The crux of the issue is that MassDOT wants/needs more space at South Station (and eventually North Station) and is limited by the number of tracks. Turning trains around is time-consuming: you have to unboard (deboard?) the train, board the train (even at rush hour, 50-100 or more reverse commuters may be waiting), have the crew change ends, and then thread out the same slow trackage you came in. Even with the best of practices, a terminal station track can only accommodate a train every 15 minutes or so. But if trains run through, boarding and alighting is faster and easier, there’s no need for the crew to change ends, and with more destinations,  fewer passengers get off at each stop. You could route 20 trains per hour per track, meaning that four tracks in the rail link could do the work of 20 at South Station (currently there are 13; the expansion would add about a half dozen more).

Electrification. You need to electrify the whole system (and maybe Amtrak to Portland). Maybe you could get away with dual mode engines, but that’s lipstick on a pig. Electrification of the Commuter Rail network would cost somewhere in the neighborhood of $1 to $2 billion dollars. Not cheap. But huge operational efficiencies: electric trains are cheaper to run, cheaper to maintain, and have faster acceleration meaning that trip times (and staff costs) are shorter, while ridership is higher (faster trains = higher ridership).

North/South imbalance and the Grand Junction. The idea behind the North South Rail Link is that trains coming in to South Station run through the tunnel and out one of the North Side lines. This is the Philadelphia model. This works well in theory (some passengers would get a one-seat ride; others would have to change), but in practice more trains run in to South Station than North Station (although this was not always the case; in 1972 there were twice as many passengers at North Station). Several pair off relatively well:

Needham-Haverhill
Providence/Stoughton-Lowell
Franklin-Fitchburg
Old Colony Lines-Eastern Route

But falls apart when you realize that all the North Side routes are taken and you haven’t accounted for the Worcester or Fairmount Lines. You could route them through to other terminals, say, to Anderson Woburn, but this seems wasteful; you don’t need a train every 8 minutes inbound from Woburn. This is where the Grand Junction comes in. If it were grade-separated in Cambridge (or maybe even if not; there are grade crossings in downtown Chicago with 20 trains per hour at peak times), Worcester Trains could split off at West Station (hopefully) and make a loop (much like lines in Melbourne, where a similar imbalance existed), serving Yawkey, Back Bay, Downtown and Kendall. As for the Fairmount Line …

Potential for RER(/S-bahn/Crosslink)-style service. Having the rail link in place with the Grand Junction connection would not only allow you to route trains through the city, but it would also allow you to implement RER-type service filling much of the urban ring and providing more frequent service than Commuter Rail (although Commuter Rail could run more frequently as well). If all the paired lines shared one set of tunnels, the Worcester Line could share the other with the following RER-type services:

Allston to Assembly via Cambridge (Kendall) and Sullivan
Readville to Allston via Downtown and Cambridge (Kendall)
Allston to Chelsea via Downtown and Sullivan

These would operate frequently all day, every 10 to 15 minutes, allowing transfers between subway and Commuter Rail. This leverages the capacity of the rail link to create a complementary urban rail network to provide new connections and take some pressure off the existing hub-and-spoke network.

Get rid of North Station. Most ideas about the Rail Link include three downtown stations. But you only need two. Where North Station is today is convenient to very little, and the half mile to its north is taken up by highway ramps and water. A better idea would be a station between Aquarium and Haymarket. It still allows for transfers to all subway lines, and there is very little that is less than a 10 minute walk from North Station but more than a 10 minute walk from Haymarket. It would save money, too. (Obviously, the existing Green/Orange line station would remain.)

Open new land to development. Much of the land near North and South Stations is taken up by trackage, and the Rail Link, obviating the need for these stations (a couple of tracks to use in emergencies and for trains like the Lake Shore Limited might make sense, at South Station especially, although these trains could operate to West Station and provide connections there instead), and this would be very valuable land. In addition, it would render Boston Engine Terminal obsolete as maintenance would be for electric vehicles, and if maintenance facilities were rebuilt on less valuable land (say, in Billerica or next to the Anderson/Woburn station). Based on what Northpoint just sold for, it would be worth maybe half a billion dollars in development rights. A lot of this money could be captured to help pay for the rail link itself.

Will the North South Rail Link happen any time soon? Probably not. But hopefully this will help people understand its potential (which is huge!) and what we’re talking about when we talk about the NSRL.

What if the Allston Viaduct was rebuilt … without a huge highway viaduct?

I’ve gone to my fair share of meetings and written quite a bit about the Allston viaduct project.

The long and short of it: $250 million for a replacement viaduct basically replicating the old one, and maybe some transit, walking and biking improvements if they can “find” the money. Everyone agrees the project has to happen: the viaduct is falling down. There are preliminary plans, and arguments over how big and wide of a viaduct to build.

But what if you didn’t build a big, wide viaduct at all? If you think outside the box (as this page has before), there’s the potential to save money. Considering how much cheaper it is to build other roads at grade, potentially lot of money. $50 million. Maybe more. The resulting highway would be safer, have better grades and sight lines, and integrate better in to potential development in Allston. It just requires a slightly change of the state of mind.

I won’t blame anyone for not realizing this earlier. I’ve been writing about this for years and it took a prompt to see if everything would fit at grade to figure it out. (The answer is you’d be about 30 feet short of lateral space to put everything at grade, and you still need to cross the Turnpike and Grand Junction.) But once you change you frame of reference, elevating the Grand Junction over the Turnpike, instead of the other way round, makes a whole lot of sense.

$250 million is a lot to spend for a mile of roadway; much of that cost is in building a high-and-wide viaduct, supports and steel and drainage, and said viaduct then costs more to maintain. This project has a lot of moving parts (bike/ped paths, Soldiers Field Road, Mass Pike, four railroad tracks going to two separate destinations) in a narrow corridor, including one (the Grand Junction branch) which has to cross another (the highway). But what if you could do it all without a hulking, expensive highway viaduct? An at-grade highway would save a lot of money. It would cost less to maintain. And it would remove the Great Wall of Allston between the river and the neighborhood.

With the state budget deficit and without increased gas taxes for infrastructure spending, we need to fully analyze projects so they are as fiscally responsible as possible. In this case, the project is necessary—the viaduct is the same age as the crumbling nearby Commonwealth Avenue bridge—but replacing a viaduct with another viaduct is far more costly than moving as much of the project as possible to grade. There is a way to do this—to build much less elevated structure—which would likely save tens of millions of dollars. We need to seriously consider it, although so far any project which does not include a large, wide road viaduct has been dismissed out of hand. That must change.

I think it comes down to priorities. With so many moving parts, there needs to be some back and forth. Certain things are immutable: you can’t get rid of the Turnpike, or the railroad. Others—what goes where, construction impacts, and the like—can be changed. So here is a rundown of priorities, roughly ranked:

  • Retain Turnpike capacity at completion.
  • Retain Worcester Commuter Rail at completion.
  • Retain two-track right-of-way for Grand Junction at completion.
  • Retain Paul Dudley White path along river.
  • Provide connectivity for a future West Station
  • Minimize cost.
  • Maximize economic development opportunities by minimizing above-grade land use for transportation infrastructure in the Beacon Park Yards area.
  • Minimize disruption to rail and road traffic during construction.
  • Improve quality of life for surrounding neighborhoods. 
  • Add width to highway to improve emergency lanes and sight lines.
  • Build a “People’s Pike” connecting the river to Allston and Boston University
  • Improve parkland along the Charles River.

The first four items are the immutable ones. A project which fails to address them is dead on arrival; Turnpike is not going to become an Arborway-like boulevard with crosswalks and bike lanes (at least not in the next 50 years). But beyond that, it gets more interesting. The most complicated piece of the puzzle is getting the Grand Junction rail line from the south side of the Turnpike to the north side. Since 1962, it has gone underneath the roadway, and perhaps because “we’ve always done it that way,” all the plans for the future have the same scenario. Yet this requires a large, wide viaduct, and those don’t come cheap. And even setting cost aside, it turns out that it might not even be the best way to build the project anyway.

If you take a few steps back, the highway viaduct just doesn’t make sense. The Grand Junction is two railroad tracks wide, or 30 feet. The Turnpike is, at a minimum, 110 feet wide. Why not put the turnpike at ground level, and build a viaduct that is one quarter the width ? Does it make sense to put the wider, higher, larger structure above the lower, narrower one? No. Elevating the Grand Junction would be far less expensive.

What’s more, on the eastern end of the project area, the Turnpike passes underneath Commonwealth Avenue, while the Grand Junction passes over Soldiers Field Road. 1000 feet out from the narrowest part of the corridor, where one has to pass over the other, the Grand Junction line is 16 feet higher than the Turnpike. Yet the railroad slopes down and the Turnpike ramps up, as they zigzag in vertical space to attain the necessary grade separation. From a terrain standpoint, putting the Turnpike at ground level just makes sense.

In the current setup, coming from Cambridge, the Grand Junction ascends to cross Soldier’s Field Road, and then descends sharply at a 1.3% grade to move under the viaduct. The roadway, on the other hand, ascends at a 3.5% grade to the viaduct, and then nearly as sharply at the other end to reach the toll plaza. This results in limited sight lines on the Turnpike. In the proposed Grand Junction viaduct, the ruling grade of both the road and the rail line is reduced; the rail line requires a 1.1% grade towards West Station (although this could be mitigated by slightly raising the elevation of the Worcester Line tracks), still better than the current 1.3%. And the highway has no grade steeper than 0.5% west of Comm Ave, where before it was seven times as steep, improving sight lines and safety.

The charts below show the gradients for the current and proposed scenarios. The map below corresponds which each of the letters shown on the charts (data from MassGIS LiDAR data). Note how the Turnpike starts and ends at a lower elevation than the railroad. It makes no sense to have it resemble a rollercoaster.

What we have right now is a half-mile-long, eight-lane-wide viaduct to cross a double-track railroad right of way. It’s as if a highway were tunneled under a small stream instead of going over it on a small bridge. For whatever reason, a highway viaduct may have made sense in 1962. It doesn’t today.

MassDOT “considered” elevating the railroad, but they dismissed it as infeasible. Why? Because they assumed that all four tracks of the railroad would have to be elevated. I don’t think it’s nefarious; I think everyone’s mindset is that the highway has to go over the railroad, because that’s how it’s always been. But the Worcester tracks stay on the same side of the highway as the whole way: they can stay at ground level; there’s no need for grade separation. The Grand Junction is much easier to elevate, and requires a much narrower structure, too. Here are three slides (from here) dismissing the overhead rail line as impossible, and my annotation on each as to why it is not the case. (Click here for full size.)

One issue is that MassDOT “requires” 135 feet of highway width for full-width shoulders. While this is “Interstate standard,” waivers can be granted for constrained areas, and much of the Turnpike (including the existing viaduct) doesn’t have any such lanes. If the highway is kept at grade, it will have much gentler grades and better sight lines. This added safety will mitigate the narrow width—and such a compromise would allow for better use of the corridor as a whole.

So you should kee the Grand Junction line high, and the highway low. Westbound drivers would cross under Commonwealth Avenue and then stay level. From their right, the Grand Junction line would ascend slightly—about 5 feet at a 1˚ grade—and pass on to pedestals over the center of the highway. It would continue down the center until it curved off to the left towards West Station and descended to grade. This is not a novel concept: the JFK AirTrain in New York operates in a similar manner in median of the Van Wyck Expressway. And since initial foundation work could be completed under the existing overpass early in the project, the bottoms of the pedestals and median could be pre-built with minimal impacts to traffic; less of an impact than shown here. One note: the AirTrain uses lighter vehicles than the Grand Junction, so it may require more closely-spaced supports and a somewhat thicker deck akin to what is used for other “modern” T bridges like the Eastern Route crossing of the Mystic River.  (The photo on the right is of construction of the Van Wyck AirTrain, from this site.)

Which of the following is more inviting?

Since the AirTrain is elevated above cross streets as well, it’s quite a bit higher than a viaduct would be in Allston, what a cross-section would look like from the Paul Dudley White Bike Path is similar to what it looks like when it crosses a cross street. That’s a bit less obtrusive than this. Or see below:

The photos above are actually taken from approximately the same distance away. Note how much more of the sky you can see above the Van Wyck. Wouldn’t you rather have something like the image on the right?

Not only is it one third the width, but it appears (and, in fact, is) lower for two reasons. In the nearby Prudential Tunnel, roads require about 14’3″ feet of clearance, trains 16’9″, so a road viaduct over a rail line is higher than the other way around. Second, trains don’t require guard rails. Put together, these add up to the top of the structure being six or seven feet lower for a rail structure. Much like how the Somerville Community Path is being built as part of the Green Line Extension, the “People’s Pike” path, it could cantilevered off the side of the Grand Junction viaduct (with additional support extending to the higher ground in—and connections to—Allston, if necessary). For an observer standing on the Paul Dudley White bike path, a rail viaduct in the median of the highway would be visible up to 6˚ in the sky, and 15˚ when a train passed over. By matching the initial grades, the highway can be lower than the Grand Junction since they don’t have to swap positions. The nearer and higher highway alternative would be visible in 20˚ of the sky, and 25˚—nearly a third of the way to vertical—when traffic is taken in to account. The smaller rail viaduct would cast many fewer shadows across the bike path and river as well.

Here is a cross section of my plans and the viaduct plan. Colors denote uses, and are scaled to the height of the users/vehicles. Scale in feet:

By elevating the Grand Junction, there is enough room for the rest of the uses:

  • 14 feet for the Paul Dudley White path (an increase from 8 to 10 feet now, narrower in places)
  • 24 feet for each side of Soldier’s Field Road, with a two foot median and two feet separating the bike path. This is the current width, and the road would need little modification overall.
  • A four-foot barrier between Soldier’s Field Road and the Turnpike.
  • 54 feet of travel space for each side of the Turnpike, enough for four twelve-foot lanes, a two foot left shoulder and a four foot right shoulder, with a six foot median where the supports for the rail line sit. Including barriers, this is 11 feet more than the current 107-foot-wide viaduct, although it is not as wide as the proposed MassDOT viaduct with full shoulders. However, by mitigating the steep grades and sight line issues, the road could be designed in this section with these narrower shoulders. With 11 foot lanes, an 8 foot shoulder could be accommodated.
  • Six feet for the concrete pedestal supports for the box-girder structure for the Grand Junction rail line, which is 30 feet wide.
  • 30 feet for the Worcester Line right of way, which would be relocated only slightly once the viaduct abutments are removed.

From above, it would look something like this (with just a sketch of ramps and street grid in Allston, which would built above grade):

And a focus in on the narrow viaduct area:

It would also have benefits in the Allston area. In current plans, the Turnpike viaduct has to slope gradually down through the Beacon Park Yard area. If it were at grade, it could be easily decked over, and ramps could go up to a street grid on that deck. The Grand Junction would have to descend towards West Station, but it has a much smaller footprint and would start its descent from a lower elevation, thus it would much more easily integrate in to the surrounding area.

Construction would also be much simpler, because instead of a multi-stage process where the viaduct was unbuilt and rebuilt at the same time, it would simply be unbuilt in stages, with the new roadway built on the ground below. The current staging plans call for a new, wider viaduct to be built in stages, two lanes at a time, while the old bridge is being torn down, including many temporary supports and other engineering issues. By putting roadways at the surface, you could accomplish the entire task without building any new bridging, in fewer stages (dismantling four lanes at a time instead of two), and only shoring up a few supports temporarily. It’s even possible that pedestals for the Grand Junction—which would likely be built under the current viaduct before other construction—could be used during construction to shore up the viaduct as it is dismantled.

As for the final product, rather than a 110-foot-wide, 30-foot-high viaduct, you’d have a 30-foot-wide, 24-foot-high one. The rail structure would have just 22% of the mass of the road viaduct. Road noise would be lower to the ground (with the potential for an overbuild park to cap noise all together), and the viaduct would be further from the river and from buildings at BU. And ongoing maintenance costs would be far lower. The main loss is the inability to tuck some of Soldier’s Field Road under the viaduct and create slightly more parkland in the vicinity of the viaduct. But for a cheaper project, you get a much smaller viaduct which casts fewer shadows over this area, so the bike path is a more pleasant experience.

The only major issue would be a relatively long-term closure of the Grand Junction branch, so MBTA operations and a small amount of Everett-bound freight would have to move via Ayer and Worcester. This happened recently when the Grand Junction bridge was undergoing emergency rehabilitation for several months; the biggest issue was the 10 mph speed limit on Pan Am trackage between Ayer and Worcester. (The railroad out to Worcester is Class 3 and permits 60 mph speeds, the rebuilt railroad inbound from Ayer will mostly be Class 4 with speeds of 80 mph.) With a small portion of the money saved from not building a road viaduct, that track could be upgraded to Class 2 (30 mph) trackage to save considerable time with equipment swaps and improve a freight rail trunk line as well. It would also be an opportunity to fully rebuild the Grand Junction bridge, and other portions of the corridor to Kendall Square and beyond. (One other minor issue is serving Houghton Chemical, which could be accomplished, by relocating Houghton Chemical to the other side of the highway as depicted above. In the “armpit” of the Turnpike and railroad, it would be a perfectly good site for such a use, sustain a family business in the area, and free up developable land near the river.)

Once you take a step back from the current situation and think about this, it’s obvious. It makes no sense to build a wider, higher viaduct for a roadway when you can build a narrower and lower one for the railroad. All it requires is some grading underneath the viaduct, construction that is certainly no more complex that what is being proposed. A surface roadway has a much longer lifespan and lower maintenance costs than an elevated one, and it provides a much less obtrusive—and more future-proof, as it fits in better with potential development in Allston—structure as well. It’s a better project. Best of all, given the cost differentials for projects like the Casey Overpass elimination (and McGrath and Bowker), it could probably be built for $50 to $100 million less than the viaduct, with future savings from lower maintenance costs.

That money would go a long way towards full completion of this project, mitigation steps, and ensuring the safety of other roads and bridges across the Commonwealth.

What is the actual capacity of BRT?

This is the second in a series about the ITDP bus rapid transit report for Boston, and the ITDP standard in general.

When proponents of Bus Rapid Transit—

You know what? I need to redefine this. I am a proponent of BRT. But I am a proponent of BRT in context. When the ITDP talks about transit, they only mention BRT. Heavy rail, light rail, commuter rail, these are seen as competition, and need to be denigrated whenever possible. BRT is the solution, anything else is not even worth mentioning. 


This is myopic. Bus rapid transit is a tool, but just a a tool box needs more than just a hammer, transit needs a variety of modes working together depending on a city’s existing infrastructure, needs and geography. BRT needs to be used where and when it is appropriate, but it is not a one-size-fits-all solution for every transit need. I’ve already discussed how BRT is not particularly compatible with narrow streets, and how the cities used as analogs to Boston are anything but. 

—So to begin again:

When propagandists of BRT (yup, I went there, ITDP) talk about the benefits of bus rapid transit, they don’t tell the whole story. Their argument is that bus rapid transit has the ability to transport as many people as any other mode (45,000 per hour!), at a fraction of the cost. In very isolated cases, this may be true. However, they don’t mention that this is an extreme outlier. The infrastructure required for that number takes up enough space that it is compatible only in urban areas with long, wide thoroughfares with space to build. Without this, capacities are an order of magnitude lower, and BRT is much harder to scale than rail.

Here is what the ITDP shows for capacities in people per direction per hour:

This is somewhere in the neighborhood of being true (it’s, shall we say, rosy), but it shows absolute maxima, which for BRT are often attained in conditions which, in most cities, are unworkable. (Let’s also set aside the fact that 6000 people per hour on a non-BRT bus system equates to 1 minute headways, that a four-track metro like the 6th Avenue Line in New York runs at a capacity of 60,000 per hour and theoretically could run at 100,000 and that light rail is capable of more than 20,000 passengers per hour in, for example, Calgary. So, it’s basically not true then; see below.) The BRT number is from Bogotá, and it is an outlier. The way that Bogotá attains that number is by having the BRT system in the center of a highway with wide stations and two lanes for buses on either side, necessitating about 70 feet of street width. This requires four bus lanes at stations, and the street width to accommodate that something many cities just don’t have.

Without this width, BRT carries many fewer people. Bus and rail transit scale in two very different ways. Imagine (or look at the chart to the right) a graph where the X axis is the route, and the Y axis is the width of the corridor or the number of lanes/tracks. Rail scales along the X axis, by adding vehicles to the train, so that going from one car to 10 cars gives ten times the capacity. However, adding a second track (increasing the Y axis) only doubles capacity, there are no similar economies of scale. BRT can only lengthen the vehicle so much; most BRT buses top out around 100 feet (carrying about 160 passengers). However, doubling the number of lanes a BRT uses increases capacity by 10 times (or even a bit more; the most frequent route in Bogotá has 350 vehicles an hour—a bus ever 10 seconds!). So while rail can scale by an order of magnitude within a narrow corridor, BRT scales best in another dimension. However, this requires four lanes of width, plus stations, to have the same increase in capacity.

This becomes an issue when capacity is an issue. For a line transporting 1000 or 2000 people an hour, rail is no better than bus: a single-car light rail train every 8 minutes has about the same capacity as a 60-foot bus every 4 minutes. (This is assuming they have similar signal priority, level boarding and fare collection mechanisms to minimize dwell times and unnecessary stops.) Both these frequencies are show-up-and-go frequencies; the average wait time for a three minute headway versus a six minute one is a negligible 120 seconds, a small percent of total trip time.

But if demand increases, a rail line can easily add capacity while a BRT system can not. Increase demand to 3000 people per hour, and a rail line will handle it fine: a two-car light rail train every seven minutes does the trick. However, a BRT system maxes out around 60 trips per hour, and even at this point, even a minor load imbalance (say, from connecting services) or a traffic light cycle missed (say, to allow pedestrians to cross*) will cause bunching. There are diminishing returns at very low headways as being slightly out of sync can cause bunching and crowding issues. There’s a reason the BRT line in Los Angeles (the Orange Line) has four minute headways, and not less. Beyond that, bunching, and accompanying diminishing returns, are inevitable.

[Update: Mexico City has more frequent service, it’s just that Google Maps transit doesn’t show that. Thanks, Google Maps! And I didn’t go in to the GTFS file to see what was going on, and it’s a somewhat complex file! So, Mexico’s BRT system has higher throughput, especially given their longer buses, maxing out around 12,000 per hour. Of course, with vehicles every minute at-grade, bunching is inevitable as crossing phases have to be a certain length on wide streets, so speed declines. It’s certainly faster than minibuses in mixed traffic, which the system replaced.]

Beyond 3000 people per hour? A two-lane bus system has problems; crowding will increase dwell times, and capacity or speed may actually go down. A light rail line will reach this point as well, but will be carrying many more passengers when it does so. Boston and San Francisco run 35 to 40 light rail trains per hour underground, with a capacity of 15,000 passengers per hour (Boston, with some three-car trains, actually has a slightly higher capacity). Calgary runs 27 three-car trains (with plans to increase to four) through downtown at rush hour, at-grade! 27 four-car trains will give it a capacity of 22,000 per hour. (Their system carries more than 300,000 riders per day, higher than Boston or San Francisco.) That’s on par with pretty much any BRT system (Bogotá’s is over capacity, and they are actively looking to build parallel lines to reduce the demand on the main trunk routes.), but the stations and track only take up about 40 feet of street width, enough for a lane of traffic and wide sidewalks in an 80-foot building-to-building downtown corridor, still narrower than any BRT street in Bogota.

In any case, the chart that the BRT report has should actually look something like this, accounting for typical loads and outliers:

Typical loads are lines such as the Broadway IRT for the four-track metro, the Red Line in Boston for the two-track metro, a single branch of the Green Line for the LRT, and the Orange Line in LA for BRT. I took a guess at the typical throughput of a four-lane BRT; I couldn’t find any specific schedule or loading data.

Maximum loads are theoretical maxima. For a four-track metro, this is double a two-track metro (the 6th Avenue line is the busiest trunk line in New York, running about 30 trains per hour with a capacity north of 60,000, but could carry more). For two-track metros, several are in the 40000 range: the Victoria and Central lines in London (33 trains per hour, 1150 passengers per train), and the L train in New York (20 trains per hour, 2200 passengers per train). For BRT, four lane, the number is from Bogota. For light rail, the number is from Calgary, assuming they implement four-car trains as scheduled this year. And for BRT, two lane, the number is from a single-lane, one minute headway system with 100-foot buses (which don’t exist in the US).

Two notes:

  1. Bogotá’s system is an outlier. Most BRT systems carry many fewer passengers, especially the majority of lines which do not have passing lanes at stations to increase their capacity. While light rail can scale dramatically, BRT can not, unless the streets are wide enough. Which, in Boston, they’re not.
  2. Four-lane BRT is akin to four-track metros in capacity enhancement (a four-track metro can carry, in theory, more than 100,000 passengers per hour). However, a four-track metro is only necessary in very high demand situations; most two-track metros can be scaled to meet demand. Four-lane BRT, however, is necessary even when demand is well below what a typical metro line, or even light rail line, might carry. 

Here’s another way to look at capacity. It shows how different transit modes attain capacity: rail by adding vehicles (and, to get very high frequency, extra tracks) and BRT by adding passing lanes and frequency. It also shows a dotted line at 60 trips per hour—a one minute headway. Most systems operate to the left of the dashed line. In the case of rail systems, this is because more capacity is generally not needed. In the case of BRT, however, it is because the system is operating near its maximum. In reality, the lines should curve flatter beyond 30 trips per hour (except for four-lane BRT) as bunching and load imbalances cause diminishing returns.

In any case, it’s another way to show that while BRT is a useful tool in the transit toolbox, it has a very finite capacity unless it can be expanded to four lanes (plus stations). If you are trying to design a system which can scale, you either need to have that corridor space available (as is the case in Bogotá), or build a rail line. Without that, bus rapid transit can carry about 2500 passengers per hour, but it can’t scale higher.

[ * A note on pedestrians: surface BRT is constrained by the length of crossing traffic light cycles. Even with full signal preemption, a crossing cycle needs to be long enough to clear crossing traffic, and for pedestrians to cross the street. In most cases, a BRT corridor will be wide enough to require 30 seconds of pedestrian crossing time. At 5 or 6 minute headways, this is not a problem; the BRT only requires 10 or 15 seconds every two to three minutes, or so. At three minute headways, it requires 15 seconds every 90 seconds, and at two minutes, 15 seconds every 60, and at a minute, BRT requires half of the signal time. It is likely that buses at this frequency would, at times, be forced to stop because of the length of the pedestrian phase (and to keep cross traffic flowing at all), which would create bunching and crowding problems downstream. Again, most single-lane BRT networks operate at four minute headways, which constrains capacity. Beyond that, they lose signal priority advantages, which constrains speed. In other words, there’s a fair argument that for surface transit, a three minute headway may be better than a one minute headway.]

The T’s bus maintenance costs are … generally in line with other large transit agencies

Shirley Leung, the Globe’s business columnist (and Olympics cheerleader) wrote a spurious article on Friday about MBTA privatization (we dissected that piece line-by-line here, and promised this longer post), where she leaned significantly on a recent study from the Pioneer Institute. Why Pioneer is taken seriously in regards to transportation is beyond me. Their numbers rarely stand up to the light of day, and when Very Serious Columnists are taking their analysis as gospel, it is a bad sign for the news media, and bad for local politics in general.

This post will look at some depth at the Pioneer Institute’s bus maintenance cost study, titled “The T’s Bus Maintenance Costs are Out of Control.” I’ve referenced the spurious “research” from the Pioneer Institute before, and mentioned this report; this is a full examination. Their assertion is that the T’s bus maintenance costs are “out of control”, some of the highest in the country, and that the T could save tens of millions of dollars a year if they just reformed how they maintain their bus fleet, asserting that their costs are twice as expensive as “peer agencies” (as defined by them, although we’ll see that their definition of “peer” is, well, suspect). There are numerous problems with this study and the numbers they use in it, to the point where their conclusions are drastically overstated and need to be fully reexamined. Since this is a very long post, I am going to break it in to two pieces: a shorter executive summary, and a larger jump deep in to the weeds of the data.

This post will discuss and dissect the following specious and disingenuous parts of the report:

  • The Pioneer Institute’s faulty definition of “peer agencies”; the metric they use to select agencies is one of few which by definition varies by agency policy.
  • Is “cost per revenue mile” the best metric for measuring the effectiveness of maintenance operations? Does a different number (cost per revenue hour) give us better data and better match how most bus operations account for bus costs, anyway?
  • Pioneer cites Minneapolis as a close analog. But they don’t account for dramatic differences in costs of living and maintenance facilities in the two cities.
  • Pioneer also digs in to the T’s salary database to pull out examples of highly-paid maintenance workers. Yet they look only at the top salaries, not at averages. This is simply hyperbole; their selective use of data serve not to inform people but to scare or anger them.
Overall, much of the supposed variation between the MBTA’s costs and other agencies that Pioneer cites are easily debunked, and they misuse data to misconstrue a problem to fit their agenda of privatization and overall cuts to transit. Instead of looking at appropriate data to try to see how the MBTA could best reign in costs, they use some of the worst data they can find to make hyperbolic statements. And when MBTA reform panels view these data as fact, they’ll make uninformed decisions.

In Brief: By Manipulating data, Pioneer Misrepresents Facts on the Ground

To make its case that the T’s costs are “out of control”, Pioneer first needs to find other agencies to compare the costs to. While there are many ways to use the National Transit Database to choose systems similar to the T, the Pioneer Institute takes an interesting approach. And I don’t mean interesting as in novel, I mean interesting as in suspect. The most logical idea would be to use a list of other large transit systems, but the Pioneer Institute uses miles between “failures” which the NTD explicitly points out in their definitions is subject to variation in agency policy.

By doing so, and by selecting agencies which carry one fifteenth as many passengers at MBTA buses alone (and in some cases as few as one fiftieth—or two percent—of the total number of passengers) they are really comparing apples to oranges. The T is being compared to sunbelt cities (no road salt, roads with less traffic and fewer acceleration and deceleration cycles) with many fewer passengers. These include systems which serve Palm Beach County, suburban Detroit and El Paso, for example, yet the report doesn’t compare the T to Philadelphia or Seattle, much better analogs. Comparing the T to its actual peers—other top-20 transit agencies—makes the costs go from 100% higher to just 40%. More than half of the supposed out of control costs are because of a false comparison.

The report also uses “revenue miles” while “revenue hours” would be a better metric. The T, which serves a compact, urban area, has a relatively high maintenance cost per revenue mile while its cost per revenue hour is more in line with other areas. It turns out that per hour (and many bus operation costs are per hour, not per mile) the T has some of the most efficient buses in the country, in the company of Chicago, San Francisco and New York, and far ahead of El Paso and Spokane. To put it another way: not all miles are created equally: a mile on the T will have more stops, more acceleration and more stress on the bus infrastructure, but also many more passengers.

Pioneer then cites Minneapolis as a good analog for the MBTA. While Minneapolis has a similar number of buses to the T, this analysis is somewhat fraught for a few reasons. First, Minneapolis carries only about half the bus passengers of the MBTA (and operates only a nascent rail system, so its overall transit ridership is only 20% of the T). Minneapolis also has much newer maintenance facilities (all have been built since the 1980s) as opposed to the T’s facilities, many of which date from the streetcar era. In addition, Minneapolis has the capacity to store nearly all of their vehicles indoors, a far cry from the T’s outdoor yards. Boston does have an advantage, however; it’s facilities are much more centrally-located, and it has only about half the deadhead requirements moving vehicles in and out of service that Minneapolis has, saving significant operating expenses.

Finally, Pioneer makes a hyperbolic statement about how highly-paid some T maintenance employees are, but it of course only cites the highest paid employees, and doesn’t look at any averages. The average worker is not paid in excess of $100,000; and the $70,000 maintenance salaries commanded by the skilled workers who keep the T’s rolling stock in place may be high, but are commensurate with the high cost of living. (House prices in Boston are twice what they are, for example, in Minneapolis.) The high salaries cited are due to overtime accrued (those lazy union members at it again, working 60 hour weeks), likely at times when many vehicles are in need of repairs to maintain service (the T has a relatively low spare ratio, so a problem which at another agency might be put off while a new bus is put in to service would have to be fixed at the MBTA). These cost differentials, and the fact that the MBTA has invested far less in capital facilities than Minneapolis (upgrading all of the T’s bus facilities would likely stretch beyond a billion dollars), bring the costs much closer together. Additionally, the T keeps a lower headcount (which saves on the number of benefited employees) and instead pays more overtime. This may actually save money, since for many employees the cost of benefits amounts to 30% or more of base salary, so having more employees working fewer hours may cost more.

Pioneer’s study is a textbook case of having an agenda and massaging data to best fit ones premonition. The problem is that under more scrutiny, the numbers mostly fall apart. The T’s maintenance costs are more expensive than several other large systems (although notably less than New York), and there are certainly lessons that we could learn from them. However, instead of beating the drum of the greedy unions and that privatization is the only answer, we should look at what works—and what doesn’t work—and how the T can take advantage of more efficient workplace and management practices. Relations between government and the T unions have never been warm, but specious threats based on hollow data and parroted time and again in the news media will not help the matter. And rather than trying to drive a wedge between management and the laborers, the T should give the unions a seat at the table: workers without the constant specter that their jobs may be outsourced are likely to be more productive, which may save money in the long run.

In Detail: The Numbers Behind the Curtain


What is a “Peer Agency” anyway?


In their report, the Pioneer Institute defines the “peer agencies” against which they compare the MBTA’s costs. Before we get in to exactly how they do so, below are three lists of cities (or in the case of larger statewide agencies, the city or region in which the agency operates). Two are what the Pioneer Institute used as their “peer agency” list. Which do you think is a better fit for the comparison against the T? (NB: I’ve colored systems which appear on two or more of the lists to show the amount of crossover between them.)

List A: List B: List C:
Washington, D.C.
Houston
Oakland
Salt Lake City
Sacramento
San Jose (VTA)
Saint Petersburg
Spokane 
Baltimore (MTA)
New Jersey Transit
Orange County, Calif.
Cleveland
San Diego
Delaware Transit
Suburban Detroit
Palm Beach County
Albuquerque
Cincinnati
Jacksonville
Suburban Chicago
Washington, D.C.
Houston
Oakland
Salt Lake City
Sacramento
San Jose (VTA)
Saint Petersburg
Spokane 
Minneapolis
San Francisco
Chicago
Fort Worth
Dallas
San Bernardino
Rochester, N.Y.
Syracuse
Providence (RIPTA)
Charlotte
El Paso
Memphis
Washington, D.C.
Houston
Oakland
Baltimore (MTA)
New Jersey Transit
Minneapolis
San Francisco
Chicago
New York City
Los Angeles
Philadelphia
Denver
Miami
Atlanta
Pittsburg
San Diego
Las Vegas
Portland
Honolulu
Seattle
Any guesses?

List C is a list of the largest bus transit systems in the country by daily ridership. Lists A and B are the lists the Pioneer Institute uses. Does it make sense to compare the MBTA to cities like Spokane, Salt Lake City and Saint Petersburg? Or does it make more sense to use cities like Los Angeles, Philadelphia and Denver? I’d argue the latter. The Pioneer Institute, apparently, thinks the former. Note that of the Pioneer Institute’s two lists comprise 32 cities, of which just 8—25%—are among the top 20 transit systems. The MBTA, for comparison, is the 7th largest.

Before we go any further, let’s look at one piece of data for these lists:

Pioneer List A: Pioneer List B: Top 20 Agencies:
Mean Daily Ridership 157396 186315 483682
Median Daily Ridership 100596 67335 320815

They’re comparing apples to oranges! The average ridership for the top 20 bus agencies is 483,000. (The T carries 405,000 daily.) The average sizes of the agencies Pioneer is comparing the MBTA to are 32% and 39% as big. Looking at the median size (more important, actually, since Pioneer does not weight their averages), the median Pioneer agency is 16-25% as big as the T. Unless there’s a very good explanation as to why they chose these agencies, it seems that they weren’t chosen for a logical reason.

So, how did Pioneer define “Peer Agency”? They looked at two metrics for vehicle maintenance: miles between failures (List A) and miles between major mechanical failures (List B). Pioneer Institute took some lower bound for the size of a bus fleet or daily ridership (somewhere in the neighborhood of 100 buses or 25,000 daily riders; they don’t define this) and sorted it by the overall miles between mechanical failures metric (which they define as “maintenance productivity performance”) from the National Transit Database (NTD) to find the “most similar” agencies.

This is problematic for two reasons. First, choosing this lower bound means that they are going to be comparing a wide variety of systems very different from the T, as seen by the list above that includes several transit systems with one tenth or fewer the daily ridership of the MBTA. Six of the agencies have ridership under one tenth of the T—40,000—another 13 come in under 100,000, or less then a quarter the size of the T. This means that nearly half of the MBTA’s “peer agencies” carry 1/4 or fewer the number of passengers daily; few of these have interconnected rail systems either. One comparison, to Palm Beach Transit, is so risible that on a Sunday, the 28 bus in Boston carries more passengers than the entire Palm Beach transit system.

This is more of an issue, because it means that Boston is being compared to many cities which have far, far less transit service. Since the MBTA carries 2/3 of its passengers by rail (New York, DC and—believe it or not—Atlanta are the only other cities in the country with more rail riders than bus riders) it means that the MBTA carries fifty times as many passengers each day than the smallest “peer” agencies in cities where transit accounts for a tiny percentage of trips. I’m going to pause and say this again: the Pioneer Institute defines a “peer agency” as one which carries 2% as many passengers daily as the MBTA. That’s a rounding error! This is like trying to draw conclusions by comparing Starbucks and an independent coffee shop. It doesn’t make any sense.

Thus, most of these systems will have buses which operate in much different conditions than the T. They have longer distances between stops, far less acceleration and deceleration, fewer passengers per bus and much less time spent with crush-load capacities which put more strain on the vehicle’s physical infrastructure. In most cases, their routes often operate through less-dense city centers and not mainly as a feeder system for subway stations like the T does, with many fewer cycles between full and empty.

Second, and perhaps even more egregious, there’s the definition of system failures (italics mine):

(List A) Other Mechanical System Failure: A failure of some other mechanical element of the revenue vehicle that, because of local agency policy, prevents the revenue vehicle from completing a scheduled revenue trip or from starting the next scheduled revenue trip even though the vehicle is physically able to continue in revenue service. 

(List B) Major Mechanical System Failure: A failure of some mechanical element of the revenue vehicle that prevents the vehicle from completing a scheduled revenue trip or from starting the next scheduled revenue trip because actual movement is limited or because of safety concerns.

While most NTD numbers are rather concrete (“passenger miles traveled” or “revenue service hours”) these much more fungible based on different maintenance criteria for different agencies. Note especially that the first list is explicitly based on local agency policy. So, not only is Pioneer choosing cities with much smaller systems, but they are compounding this issue with a metric which varies by local agency policies! What’s more, some agencies, like the Maryland Transit Agency, don’t report “other mechanical system failures”, only major ones.

It would make sense to use a variable that is well-correlated for this analysis. Here are the r-squared values for agencies with at least 25,000 daily bus passengers:

  • Major failures and maintenance cost per revenue mile: 0.049
  • Other failures and maintenance cost per revenue mile: 0.018
  • Average weekday passengers and maintenance cost per revenue mile: 0.39

One of these things is not like the others. One of these things is correlated order of magnitude with the cost per mile than the others. And the numbers range more than one might expect: major failures range from every 1600 miles to once every 117,000 miles; and other failures, for agencies which report them, range from once every 2900 miles to once every 953,000 miles.

What might cause a bus to be removed from service in one system might not in another. There’s nothing wrong with that, but it makes it very suspect to use these numbers as a basis for further analysis, especially when better numbers certainly exist. It would make much more sense to choose the cities in the top 20 to compare to the MBTA. The problem is that such a list wouldn’t have supported the Pioneer Institute’s “conclusions” nearly as strongly.

Pioneer is measuring the “productivity” of a bus maintenance shop by the frequency with which the buses broke down without looking at any other data. This is like measuring the “productivity” of a doctor by the frequency with which his or her patients die. Which is all well and good—some doctors are actually more productive than others—except that a cardiologist is going to have more patients die than an optometrist, a gerontologist is going to have more patients die than a pediatrician, and a doctor that works in a high smoking state like  Kentucky is going to have more people die than someone working in Utah. If you’re not correcting for the age of the vehicle, variations in the kinds of vehicles used, and variations in the duty cycle, you’re going to come to some screwy conclusions.

I like charts, so here is one. It shows transit systems with more than 20,000 riders. Note how the Pioneer Institute’s “peer agencies” are mostly clustered in systems with much lower ridership than the MBTA. I threw in a best fit line for fun, and, yes, larger agencies have higher maintenance costs. Which is not surprising.

In any case, it comes down to a sort of Occam’s Razor question: the obvious definition of “peer agency” would be “other large transit systems.” Since that was not the metric used, we need to look in to why it was not. If there’s no good answer why it wasn’t—and there isn’t—then it certainly seems like the reason Pioneer used these criteria is to try to prop up their preconceived conclusion, rather than to make an honest argument.

I’ve only compiled the 2013 data (why? because I am doing this evenings and weekends and I don’t have a paid team of fellows and researchers funded by right-wing climate change deniers to go back through several years), but note the following:

Pioneer List A: Pioneer List B: Top 20 Agencies:
MBTA maintenance
cost % of average
208% 192% 153%

In other words, just by choosing a more representative data set, we’ve explained away half of the discrepancy between the T and other agencies.

But, wait, there’s more. Let’s say you only looked at the small group of agencies clustered near the T. There’s a big (50% increase) gap between Denver at 250,000, and Seattle, at 391,000, and another 50% gap between SEPTA and the CTA. If we compare Boston to Seattle, New Jersey, San Francisco, New York MTA Bus division and Philadelphia, the T averages just 140% of those other agencies, barely one third of the difference Pioneer’s “data” show. That seems like a much more representative sample than, say, Salt Lake, Sacramento, San Jose, Saint Petersburg and Spokane. I would wonder if the Pioneer Institute would deign to offer an explanation as to why they chose “peer agencies” in the manner that they did.

As I see it, there are three. One is that they randomly picked the metric to categorize this, and somehow stumbled on to the worst one they could since it’s really the only NTD data which varies by agency. I doubt this based on the Occam’s Razor principle that if you asked a student in a first year transportation statistics class what to use, they’d be hard-pressed to come up with what Pioneer did. The second is that someone doing research at Pioneer just isn’t that bright, and that’s a possibility. But the third is more nefarious: they came in to the study with a question they had a preconceived answer for, and then found the snippet of data which best supported their thesis. The problem is, well, the data.

Are all miles created equally?


Once the Pioneer Institute chose the wrong systems to compare the T to, they then chose to compare those systems based on a metric of “maintenance cost per mile.” On its face, this seems like a good analysis, and it’s not bad, but it ignores the issue that not every mile is created equally. For instance, which causes more wear and tear on a bus: a mile in stop-and-go traffic with a stop every 800 feet and 60 passengers on the bus, or a mile at 35 mph with two traffic lights and two passenger stops carrying 20 or 30 passengers?

Here’s another way to think about it: which is more stressful for your car? Driving with four passengers, a full trunk in stop-and-go traffic or a highway trip? The former is what buses in major cities are put through on a daily basis. But in many of the “peer systems” on the lists above, buses ply faster suburban arterials in much less dense areas. This means that they make fewer stops, and at those stops they pick up fewer people. That means less wear and tear on door mechanisms, air bags, transmissions, tires and even the vehicle frame. Wear and tear on a bus depends on its operational environment.

A better metric—one that accounts more for operational differences—would be maintenance cost per revenue hour. Bus costs are usually measured in hours (operators are paid by the hour, not the mile) and calculating revenue hours is a better way to account for different operating environments. For instance, a bus in City A might average 10 miles per hour and a bus in City B might average 15 mph. However the bus in City A might have more passengers over the course of that hour, more openings and closings of the doors, and a heavier average load. Cost per hour lets us better account for this.

So how does the T stack up on this basis? It’s still quite high, around $45.00, while the top 20 cities average to $30 and the Pioneer “peers” come out at $25. Instead of being 200% of its peers, the T is “only” 180%. So by using this metric, the T is still underperforming. However, there are more outliers in the same range. In the previous chart, the T was the only agency in the range of the New York systems; in this metric, it is joined by three others: VTA (Santa Clara County/San Jose), Pittsburgh and Detroit. Still, it is 50% higher than its peers, so there is some room for improvement. Perhaps Pioneer’s conclusions should not be “we need to privatize everything and eliminate the unions” but rather “let’s see what these other cities are doing and what we can do better.”

Is Minneapolis the right analog?

Much of Pioneer’s study focuses on comparing the MBTA to MetroTransit, the bus system in Minneapolis, Saint Paul and the surrounding area. After comparing the T to the two lists of 20 cities (one of which includes MetroTransit) the authors focus in on comparing the T to one such agency which is more like the T. (And in a stunning use of logic, they don’t choose, say, El Paso.) MetroTransit operates a similarly-sized fleet to the MBTA, and also operates in winter weather (which is not the case for many “peer agencies” above). So comparing the T to Minneapolis is not a bad choice.

But are there differences that probably account for a lot of the difference? Certainly. First of all, Minneapolis carries about 215,000 bus passengers, about half as many as Boston. The average trip is longer, as buses are the workhorse of the system (the two rail lines combine for only about 60,000 passengers per day), so there are fewer bus-rail transfers. But the number of trips per revenue mile in Minneapolis is still only 60% of Boston*—in fact, Boston has one of the highest number of trips per mile of any system in the country.

[ * This will probably be lower in coming years, as Minneapolis replaced one of its busiest bus lines—the 16 and 50, connecting downtown Minneapolis and Saint Paul and accounting for 10% of the total system ridership—with a light rail line in 2014. This has led to a significant overall increase in transit use (already nearing 2030 estimates with 36,000 daily riders), but an overall decrease in bus patronage and the number of passengers per bus. The 16 ran at 24 hour service and 10 minute headways at most times of day and was supplemented by the limited stop 50, especially at rush hours. Combined, they carried 24,000 passengers per day. ]

Pioneer examines several years of data (to their credit) and I’m looking just at 2013 (because this isn’t, you know, my job), so there are obviously fleet age questions, but when looking at a sample of this size (2 cities), there are all sorts of questions. Did numbers spike some years because many buses went out for mid-life overhaul? Were old buses give only very necessary maintenance in anticipation of retirement? Did new buses coming online require much less maintenance? I’m not sure how much difference this might make.

But what I do think makes a difference are two factors:

  • The Twin Cities have a much lower cost of living than Boston
  • While Boston uses a variety of maintenance yards, some of which date back well in to the streetcar era, the Twin Cities made large investments in large, modern and enclosed maintenance facilities.

Boston is an expensive place to live. Housing prices are skyrocketing and affordable housing is somewhat hard to come by. Working on buses requires the ability to commute to a maintenance facility, most of which are located in areas with high housing prices, and staff need to be paid accordingly. Minneapolis is far less expensive. Housing prices in the Twin Cities in 2014 were just 53% as high as in Boston, and the overall cost of living was 16% lower. Since personnel costs are a large part of maintenance costs, it is not surprising that it costs more to pay staff in Boston.

Then there’s the question of capital investment. One of the reasons the T is reluctant to add bus service is that it can’t expand its fleet. The number of buses is constrained by yard space, and new bus yards don’t come cheap. Recent discussions about rebuilding the bus yard at Arborway have quoted figures in the range of $200 to $250 million, and that’s one of more than half a dozen facilities the T operates. Rebuilding enough bus yards for the whole system would likely be a billion dollar project, or higher.

What’s more, the current locations of the T’s bus yards are worth a lot of money, and would help with the regional housing crunch. One sits at Arborway, and could be sold for $20 million (or leased to a developer as well)—and the city would also reap property taxes from a property which is currently untaxed. Another, Cabot, sits steps from the Seaport District and South Station, Albany is similarly situated in the South End, and the largest is the Charlestown Yard, in a decrepit-but-transit-rich part of Sullivan Square. So there’s the opportunity cost of not selling these off for development as well. But having well-located bus yards is an asset to the T, as it’s non-revenue (“deadhead”) mileage is some of the lowest of any large system (11%), it can’t afford to lose any facilities without replacing that capacity, and large plots of land in warehousing or industrial areas are not plentiful in Boston.

Minneapolis, on the other hand, has relatively new bus maintenance facilities. Every facility has been built since 1980. (And there are only six facilities, as opposed to the MBTA’s nine, lending economies of scale.) With lower land prices and much less density, most of the facilities are relatively centrally located, yet don’t take up valuable, transit-rich land. What’s more, every bus facility in Minneapolis is fully enclosed. In Boston, most bus facilities consist of an open yard with a maintenance garage. In the case of Arborway—one of the largest facilities—it is a small, temporary building. Buses are by and large stored outside. In Minneapolis, nearly all buses are stored inside. There’s adequate room to work, and the buses being stored don’t sit overnight in freezing temperatures.

Even still, the Twin Cities’s bus yards are not as centrally-located as Boston’s (T yards are often shoehorned in to small parcels; MetroTransit yards are usually larger and squarer). While Boston runs 11% of its mileage out of revenue service (deadhead), the Twin Cities run 24% (and as far as hours go, Boston is 9% deadhead and the Twin Cities 14% owing to a larger and less-crowded highway system in the Twin Cities). To access these newer, more efficient facilities requires significantly more operation expense. It would be as if the T built new bus facilities in Billerica, Southborough and Brockton: they’d likely be more efficient, but savings would be eaten up driving buses back and forth to and from them. Given the T’s salaries, if their garages were located such that they required 14% deadhead hours like the Twin Cities, it would add $5 million to annual operating costs.

That being said, MetroTransit has certainly invested money in vehicle maintenance facilities that the T has not. If the T had spent a billion dollars on a set of brand new bus maintenance facilities, it would likely spend less on maintaining its buses. Of course, if we assume that there is $1 billion in deferred facility capital outlay and that a bus maintenance facility has a useful life of 50 years, it would cost $20 million per year to build those facilities, money the T is currently spending on other projects. I’m not saying that this is a logical way to do business; the T should budget for and build adequate maintenance facilities. But comparing a system with new, enclosed facilities with the T’s antiquated mishmash of bus yards and small garages certainly needs some qualification.

The T’s maintenance budget runs $40 to $60 million ahead of MetroTransit each year. But, again, there’s much more to this than meets the eye. If the T required as many deadhead hours as MetroTransit, it would cost $5 million extra in operating costs just to get the buses to and from the garage. Given the difference in cost of living, the T’s salaries are higher than MetroTransit’s. If we only look at salary, the cost of living difference accounts for $6 million of that difference, and if we add in benefits it’s $11 million. And then, there’s the $10 to $20 million annually that the T hasn’t spent on new maintenance facilities. Better fleet renewal and capital outlay for maintenance facilities would probably help the T’s maintenance budget: maintenance is not siloed financially from the rest of the transit system’s operation.

In 2013 the T spent $104 million on vehicle maintenance to MetroTransit’s $45, so I’ll use those numbers. I will note that was a year before the T accepted a large order of New Flyer hybrid buses, which should require less maintenance than the 20-year-old RTS fleet they replace. In 2013 T’s bus fleet (average age: 9.4 years) was significantly older than MetroTransit’s (average age: 5.1 years). (I’m not even accounting for the lower capital costs the T has with an older fleet, although the fleet age obviously manifests as higher maintenance costs.) This could certainly be reanalyzed for other years; by using the year when MetroTransit had a much newer fleet, this probably paints the T in a worse light than is actually the case. According to Pioneer, during years in which the fleets for the MBTA and MetroTransit were similar ages, the T’s costs were only about double MetroTransit’s.

In any case:

Total Annual Expendeture $105m % of total
– Deadhead operation cost difference

– Cost of living difference (salary, salary+benefits)

– Facility construction

–$5m

–$6m-$11m

–$10m-$20m

5%

6-10%

10-19%

Adjusted total $69-$84m 66-80%
% of difference $21m-$36m 35-58%
† Adjusted total ($90m MBTA) $55m-$70m 22-39%
† % of difference ($90m MBTA) $20m-$35m 44-78%

† From 2006 to 2009, MBTA costs were about 200% of MetroTransit costs, and the bus fleets’ ages were similar. Assuming that if the T had a similarly-aged bus fleet to MetroTransit and double the costs, it would have a $90 million maintenance budget. If this is a good way to account for the fleet’s age difference, between 40 and 80% of the difference could be explained by deadhead operation expenses, cost of living and facilities.

Citing high salaries as a scare tactic


One of the favorite pastimes of the anti-union, anti-government folks is to find someone who works for the government and makes a lot of money and hold it up as an example of government waste (well, unless it’s a football coach; they’re fine with that). In their report, they go and find examples of people making a lot of money (a painter making $80,000! A machinist making $120,000! A car cleaner bringing home $70,000!) and use this to show how wasteful government is. But, of course, this is hyperbole. These are outliers: probably people who worked a lot of overtime—some 60 hour weeks—in order to make that much money. Since transit runs 24/7, there’s overtime to be had: a few extra buses break down, or someone calls sick and a worker picks up an extra shift. Are there some savings to be had from better oversight of overtime? Probably. But without showing the average numbers, these are pure scare tactics, a rhetorical device that doesn’t stand up to any scrutiny. Luckily, I have the T’s salary database sitting around (which is public record, of course), so we can do some such analysis.

Yes, all MBTA salaries are public information.
You can access the file here.

It’s unlikely the T will ever be able to use non-union employees, even if maintenance is privatized. Given the construction boom in Boston, these salaries do not seem far out of hand for union labor (union sheet metal workers, for example, make nearly $100 per hour, or $200,000 per year, although they don’t of course, have the job security a T worker does). Here are the base salary ranges for the major employment categories among the T’s bus maintenance personnel:

Fueler $34964 – $43014
Machinist $57262 – $77750
Car cleaner $60278
Painter/Carpenter $82035
Foreman $87672 – $100672
Sheet metal $89669
Pipefitter $94994
Wireperson $95617

On average, employees earned 119% of their 2015 base salaries in 2014. Why? As mentioned before, overtime. Could the T hire more employees and pay less overtime? Probably. But if they did, there’d be outcry from Pioneer about how even more workers were getting the platinum-level union compensation package and benefits. They want to privatize operations, and assure lower pay and benefits for everyone. Is that a way to treat public employees? I’m all for accountability, but it shouldn’t require these sort of threats.

To add it all together …


Pioneer’s top line statement—that the T could have saved $250 million in bus maintenance costs over 6 years—is specious. They massage and manipulate data, but it doesn’t stand up to any scrutiny. Does the T have some of the highest maintenance costs around? Yes, it does (although New York is higher still). Some of this is due to the operating environment, some is due to local costs of living, some is due to the lack of appropriate facilities and, yes, some may be due to the performance of MBTA employees. The T could probably reduce it’s overall maintenance expenditures with different management practices, but to insist that those are put in to place without any funding (for instance: to insist on better management while many repairs take place in outdated and/or temporary facilities) is just silly. To use blatantly and obviously manipulated numbers to make this argument is disingenuous, and, once examined, the Pioneer Institute’s argument falls apart. There is very little defense for this sort of sloppy “analysis,” and it certainly should not be relied upon to make policy changes.

Using several different—and more honest—metrics, we can explain away much of that difference:

  • 60% of the Pioneer Institute report’s difference in costs arise from their suspicious definition of “peer agency.” Of the $250 million that they claim the T could save, that accounts for $150 million of it.
  • Just by using maintenance cost per hour instead of maintenance cost per mile, the difference is 20% lower.
  • In comparison to the Twin Cities, we can explain 35% to 75% of the difference in costs between the two systems.
The Pioneer Institute had an agenda: to reduce the power of public employee unions and privatize all that they can. Their position may well be “why spend time and money figuring out how to reform our management when we can just outsource it and let the magic of free market competition figure all that out for us, via a contractor, now?” But without good data on other systems (Has any large system privatized and had major cost benefits? They don’t say.) this is a hollow sentiment. And the MBTA’s current contractors have been doing a less-than-stellar job of late: the publicly run subway operations recovered from the blizzards far more quickly than the private-contract Commuter Rail system.

Pioneer saw a well-compensated set of individuals, and tried to make a case that they are lazy, that they have a poor work ethic, and that compared to their peers in other cities, that they have poor work quality. It’s true that MBTA costs are higher than many other agencies, and the T could probably implement policies to bring costs down to some degree. Upon further examination, however, it is the “research” coming from the Pioneer Institute that is low quality, not the work of the maintenance department at the MBTA.

Globe Business is unfamiliar with the transit business

An article so bad a whole page of letters
was needed to point out all its flaws!

A few weeks ago, the Globe Business section wrote about Kendall Square traffic, barely paying lip service to transit and cycling (and ignoring the fact that most of the complaint was in regards to a construction project which will rehabilitate the 30-year-old infrastructure which is falling apart). The article was rightfully called out by no fewer than eight letters (one by your’s truly)—the entire back page!—in the opinion section.

To follow that up, today future Boston2024 spokesperson and cheerleader-in-chief Shirley Leung writes a completely misinformed, Jim Stergios-esque piece about transit privatization, which demands a full line-by-line refutation (sometimes called a “fisking“). So, here goes (original in italics, my comments not):

It costs the MBTA a staggering $20 per passenger to provide late-night bus service. At that rate, the authority might as well hand out cab vouchers.


This is true, if you look at no externalities, which is something business writes don’t know about, I guess. If you look at increased transit trips before the late night service begins, it shows that providing later service increases transit use earlier on as well. Additionally, increased late night service helps the local economy (more people out spending more money) and especially the low-wage service workers who are required to run it and don’t have to shell out for expensive taxi trips.

But if the T can be cut free from the state’s antiprivatization law — which Governor Charlie Baker and Speaker Bob DeLeo are proposing to do — it just might be able to operate a night owl service that makes financial sense. 


One of the reasons the Night Owl service costs what it does to run is that service is more heavily used in certain areas, and less-so in others. So, what are we going to do? Operate only a couple of routes that have a lot of riders (the Red and Green lines, basically) and not operate to lower-income areas where people actually need the service?

And here’s how: Get someone else to run it.


Now, I know the mere thought has members of the Carmen’s Union and their supporters in the Senate fuming, but let’s not make privatization the bogeyman — or for that matter, the system’s savior. The T has plenty of functions that are privatized, from commuter rail to ferry service, with varying degrees of success.


The major T service that is outsourced is Commuter Rail. You know, the system that took a month and a half to return to service after the snow (the subway took weeks less), canceled trips without telling the higher-ups at the T and stranded passengers. That one? That’s the model?

No one is proposing to outsource all bus or subway operations, but the T needs more flexibility in order for true reform to take root. In other words, we can’t keep the same handcuffs on if we ever want to escape our miserable transit past.

Our “miserable transit past.” The one that has seen ever-increasing ridership despite aging infrastructure and car-centric planning. The snow this winter was not only unprecedented for Boston, but for any other major city anywhere in recorded history. Apparently Sweden had similar accumulations in 1965 and the rail system was shut down for two weeks.

“I am not saying privately run services are a panacea,” Transportation Secretary Stephanie Pollack told me. “They are a tool, and they need to be an option.”


The antiprivatization statute, known on Beacon Hill as the Pacheco Law after its primary sponsor, Senator Marc Pacheco of Taunton, was created in 1993 in reaction to Governor Bill Weld’s privatization initiatives. The law, pushed through by public employee unions, makes it difficult for certain Massachusetts agencies to contract with private firms for any work being done by state workers. Baker is proposing to free the MBTA from the constraints of Pacheco, while DeLeo’s version calls for a five-year suspension of the statute. 


So let’s get back to the example of late-night service, and imagine what Pollack could do if the Pacheco law no longer applied to the MBTA.

Yes, let’s imagine.

Last year, the Massachusetts Bay Transportation Authority launched with much fanfare a one-year pilot to extend train and bus service until 2:30 a.m. on Saturdays and Sundays. Fares do not cover the cost of running the T, but the subsidy on late-night service is substantially more. For example, a typical bus ride costs the MBTA $2.74 per passenger, while the cost for late-night service is nearly eight times the amount.

Most late night rides are on the subway, which costs the T significantly less per passenger (about $1). The $2.74 figure is for bus trips only, and includes all trips: rush hour service is far more efficient, breaking even on some trips, while evening and weekend service, with less patronage, has a greater subsidy.

It’s more expensive because the agency is using its full-size 40-seat buses at night when there are fewer riders. 


This could be said for middays, evenings, weekends and holidays, too. Most late night service is provided by trains, which is why it’s much more popular than the 2001-era bus-only service.


What’s more, the buses run on a schedule designed for daytime commuters.

No. They don’t. Only a few buses run at all late at night, and all routes operate at far less frequent schedules than at rush hour. The 111, for example, runs every three minutes at rush hour. It runs every 15 minutes during late night service. That’s one fifth the service.

Freed to do what it wants, the MBTA could hire an outfit like Bridj, the upstart Boston transit service that employs 14-passenger bus shuttles and designs demand-based schedules.


Despite their posturing, Bridj currently runs specific routes which change intermittently but not based on real-time demand. 14 passenger vehicles might not be enough for late-night service on some routes, so they could theoretically replace only some routes. (Bridj will respond that they have some “special sauce”—their words, not mine— to deal with this but I’ll believe that when I see it; for now it’s a fixed route system.)


 The savings come from being able to adapt to a nighttime business model.

Which is going to be a heavy lift for them. Currently, the T’s late night service carries about 10,000 passengers each day of late night service, in approximately two hours (5000 passengers per hour). Right now, Bridj carries maybe 500 passengers each day during morning and evening rush hours over approximately five hours (1000 passengers per hour). So we’d be asking them to scale by 5000%, which is a lot, considering they’ve added minimal service since they began a year ago (and have cut back service as well, although this goes mainly unreported). Maybe they could supplement service on a few outlying routes, but it’s unlikely they’d replace the transit system wholesale, so any savings would be minimal.

But the opportunity to use partners like Bridj goes beyond providing a special service. Similarly, the MBTA could save money by outsourcing bus routes with low ridership — and there are many of them. For example, one route in Lynn makes nine trips a day carrying a total of 45 people, which means on average of five people are riding that bus.

Oh, Shirley. The route that Leung is referring to is the 431 in Lynn. It makes nine round-trips per day between Neptune Towers, an affordable housing development in Lynn, and Central Square. Some of its trips are pull-outs from the garage: a bus leaving the Lynn garage, rather than operating out of service, picks up passengers along a route it would already be serving. All trips are interlined with another trip (usually the 435). It operates a total of 1:22 each day, so at $162 per hour (the T’s hourly cost for bus operations) it costs about $220 to operate per day, discounting the fact that some trips would operate anyway since on pull-outs and pull-backs. Most of the trips are run in downtime between other trips, so instead of paying a driver to sit at the Lynn busway, the T provides service to an affordable housing development nearby, so the marginal cost of the service is quite a bit lower.

And how would another provider provide this service? Each round trip takes 10 minutes. Will a private operator pay a driver to sit in Lynn for an hour, run a 10 minute trip, and then sit in Lynn for another hour? Is that efficient? It could be argued that a smaller shuttle could make the trip back and forth to Neptune Towers more frequently, and that may be true. But that type of service is not really one the T provides, nor should it be one; the 431 is the case where the T has an otherwise idle bus for a few minutes and uses those to provide additional service at a minimal extra cost. This should be applauded, not derided.

This is a very good illustration of what I would call the “end of route” fallacy. If we imagine the 431 as an extension of the 435 bus (which, for all intents and purposes, it is), Leung sees an empty bus near a terminal point and assumes the whole line is empty. The 435 carries 900 passengers on a typical weekday between Lynn and the Liberty Tree Mall (making 16 round trips, so 28 passengers per trip in each direction). Leung is only looking at the 45 passengers it carries on this short extension. It’s akin to the people who say “that bus comes by all the the time and there’s never anyone on it” and then you find out they live one stop from the end of the route and by the time the bus reaches its destination it’s packed full of passengers.

There’s a further comment here: the T operates a few such routes which never see terribly high ridership but serve specific populations and are politically unfeasible to cut. One one end of the spectrum is a route like the 431, or the 68 in Cambridge. The 68 is never full, but it provides service between to Red Line stations to Cambridge’s City Hall annex and library, and is thus politically important. (The 48 bus in JP is a great example; its 85 riders each day were not happy to see it go.) Then there are train stations like Hastings and Silver Hill in Weston. They only have a few riders per day, but those riders are the “right” riders. Cutting these routes, in the grand scheme of things, saves very little money compared to the trouble it creates.

The 68 and 48 might be examples where the T could contract out services, but they are small potatoes compared with the rest of the system. Most every T route requires a larger bus at many times during the day. (88% of routes and 92% of trips are on routes which average at least 15 riders per trip—obviously more at rush hours—a size above which an operator needs a Commercial Driver’s License and commands a higher salary.) And since buses can’t magically switch from a 14 foot cut van in to a 40 foot transit bus, it would mean more time deadheading back and forth from bus yards at different times of day. Is that efficient?

But eliminating Pacheco is not just about saving money. It can also be about improving service. Yes, the MBTA could actually add routes with the help of private partners.

Yes, maybe we’d get back the 48, and the 68 would operate with smaller buses. There are maybe 10 routes the T operates which could conceivably see service with smaller vehicles to meet demand at all times. They account for two or three percent of the service. By the time you outfit those small vehicles with compatible fare equipment, ADA access and otherwise make them interoperable with the T, it makes sense to just cut your losses and operate a one-size fleet.

That’s what most excites Bridj founder and chief executive Matt George — the ability to bring his idea of flexible mass transit, well, to the masses who ride the MBTA. When he launched Bridj last summer, he never considered it competing with public transportation.

Good thing they don’t have an ad at the station in Coolidge trying to lure commuters away from their crowded (read: efficient) commute to a smaller, less crowded (read: less efficient) vehicle. While Bridj is often secretive about their numbers, sometimes they let stats slip, and it’s not the rosy picture they paint publicly. For instance, they claim that 20% to 30% of their riders are “new to transit”, while the other three quarters apparently are lured off of other services. And again, Bridj, which operates about 50 trips per day in Boston, has a capacity of about 700 passengers (if every seat of every bus is full, which is not the case), or about 0.05% of the MBTA. It’s quite possible that their shuttle buses actually operate more miles than the cars and taxis of the few people who weren’t riding transit beforehand.

“We are in a supplementary position,” George said. “We are neither set up nor we are interested in wholesale taking over anything.”

Which is good, because they’re not about to. But right now, they “supplement” peak hour transit, which is when the T does well for itself and likely makes a profit. (Oh, and a lot of it runs underground, so it doesn’t create more congestion.) It’s those pesky other times of the day and week that lose money, but provide necessary service. The T, in a sense, supplements itself.

Another big idea from Pollack is to look at whether the MBTA should own and maintain its rail cars and buses. Perhaps the state should look at whether it’s more cost-effective to lease — and require the manufacturer to maintain those vehicles.

What’s that sound? Is it a bird? Is it a 40 foot CNG NABI? No, it’s the Pioneer Institute being wrong about something, again!

That, in one fell swoop, attacks two problems. The T cannot keep up with maintenance of the existing fleet and infrastructure, with a $6.7 billion backlog of repairs that is growing. It also has come under fire for spending $80 million annually on bus maintenance, nearly twice as much as other transit agencies, according to an analysis by the Pioneer Institute, which blames the high cost on overstaffing.

This site has published a full refutation of the Pioneer Institute’s report. Let’s just say that their data analysis is specious at best and intellectually dishonest (okay: lies) at worst. The T spends less on bus maintenance than New York, and only 40% more than other large transit agencies (not 100% more). That 40% could be made up with better management practices (which should be investigated) and with capital investment in the T’s maintenance infrastructure. While other cities often have large, indoor storage yards and new maintenance facilities, many of the T’s date back nearly a century, and most buses are stored outdoors. More to come on this soon.

Here are some more numbers from the Pioneer Institute to chew on. Unlike the MBTA, the regional transit authorities — from Springfield to Lowell — can outsource. They spend, on average, $6.38 per mile to operate their privatized lines, compared with the MBTA, which spends $16.63 per mile to run its bus routes.

Has Leung seen the service provided by some other RTAs? Many run much smaller vehicles already, so it shouldn’t be surprising that their services are cheaper to run. Service is much more limited; many RTAs run service only until early evening and few run any service on Sunday at all! Likewise, the service they do run is rarely near capacity, and crush-load buses puts much more wear-and-tear on the physical infrastructure of the bus. A fully loaded bus carries 50% of its weight in passengers. Imagine driving a Toyota Corolla with five 200-pound people crammed in to it, and 400 pounds of luggage in the trunk, versus two people. Do you think that the overloaded car will need new tires, shocks, struts and a transmission (not to mention use more fuel) than the one with one or two people and a suitcase in the back seat? This is an apples to oranges comparison.

The fear of privatization comes down to taking away somebody’s job. If that’s the case, the Senate should work up a compromise to make sure union drivers are at the wheels of private buses.

Fine, but then expect the costs to not save that much money, since there are added costs (more yard space, more out-of-service operation) to those operations to eat in to any savings.

A reprieve from the Pacheco Law would go a long way to fixing the T. But, as the governor told lawmakers last month in defense of his broad plan to shake up the T, if nothing changes, then nothing will change.

A reprieve from Pacheco will make at most a very small dent in a few services the T operates. It may reduce costs by 20% for 10% of the buses the T runs. That would be one half of one percent of the T’s total budget. Is that really worthwhile? There are certainly places where the T could be more efficient. But except in a few cases, this is not a real solution, but anti-government mumbo-jumbo.

On free transfers

There is a Tweet going around that Baker’s MBTA bill has language that would allow the T eliminate free transfers. This is bad policy for a variety of reasons, disproportionately impacts the poor, disabled and elderly and would run counter to industry best practices. More on that another time. For now, here is the specific language in case you want to contact your legislator.

Current statute contains the following (Chapter 161A, Section 5, Subsection (r)):

To adopt, and revise as appropriate, a fare policy which addresses fare levels, including discounts, fare equity and a fare structure, including, but limited to, fare media and passes. Said fare policy shall include a system for free or substantially price-reduced transfer privileges.

And Governor Baker’s Bill (here) would replace that language with:

[T]o adopt a fare policy that balances the operational needs of the authority, the extent to which the authority’s fare recovery ratio is consistent with those of peer systems, the objective of increasing ridership and maximizing total fare revenues and the needs of its riders, including those of lesser means.

Much more on what the role of government is (to maximize revenue or to provide necessary services?) another time. But this is bad policy, and should not be implemented or put in to law.