Terminating the Fairmount Line in the Seaport makes no sense

Two legislators from Boston make the case—unconvincingly—that the Fairmount Line should be extended to the Seaport, rather than its current terminal at South Station. This makes no sense at all. The point of the Fairmount Line—and especially making the Fairmount Line more like a rapid transit line—is to connect to the rest of the MBTA’s system. You can do this at South Station, easily: trains terminating there allow for an easy connection to the Red Line and Silver Line, outbound Commuter Rail to Back Bay, as well as putting passengers right in to the Financial District. While a terminal in the Seaport (but really by the Convention Center, probably, which would be as far from much of the Seaport as the South Station; anything east of A Street is closer to South Station, and a much more pleasant walk) would provide a one-seat ride for anyone working in the Seaport, it would connect to nothing, except for the already oversubscribed #7 bus there.

Add in numbers and they speak for themselves. According to the City of Boston, there are 27,000 workers in the Seaport District. This is a large number, but it compares with 222,000 in Downtown or on the Red Line (i.e. near Charles/MGH) and another 80,000 in Back Bay. While the Seaport district may be “booming” right now, the rest of the City has been “booming” for decades or centuries. There are ten times as many jobs within a 10 minute walk or transit ride of South Station as there are within a 10 minute walk or transit ride of the Convention Center. These data also doesn’t include much better access to Cambridge, which amounts to another 100,000 jobs, most of which are an easy ride from South Station on the Red Line.

If you connect the Fairmount Line to the Seaport, you do provide a one-seat ride to these 27,000 jobs (although you wind up further from them than you’d really want), but you lose one-seat access to 180,000, and an easy connection to another 100,000 on top of that. This is just a terrible idea. It decreases access from the Fairmount Corridor to the rest of the system by dropping people in the middle of a concrete wasteland, with very few connections to make. If you work in the Seaport, lucky you. But this is the case for only 2% of Dorchester residents and 1.3% of Mattapan residents. 15%—ten times as may—of people living in these communities work downtown. As for non-work destinations, unless you’re going to a convention or the ICA, there’s really no reason to use the line. So ridership would be very light. And if you do need to get to the Seaport? From South Station, there’s a Silver Line or #7 bus every couple of minutes, plenty of Hubway bikes, and it’s not that bad a walk if the weather is nice.

Now, if the line somehow had a great connection to the Red Line at Andrew or Broadway, it might be a bit more feasible. Still, you’d be making passengers headed downtown (the majority of riders) transfer, and you’d be making them transfer to the Red Line at its peak load point, rather than at South Station, where many passengers from the south are getting off. But you don’t: these transfers would require a walk of several blocks, which most people are unlikely to make.

What about a split terminal, with some trains going to South Station and others to the Seaport? It would work in theory, but not in practice. There are only two railroads in the country which have split terminals, both of which are in New York. This is partly due to the geographical fact that New York has two main employment centers several miles apart: Midtown and Downtown. The Long Island Railroad runs most service to Penn Station, but some trains to Atlantic Avenue (with an easy subway connection to Downtown) and a few to Long Island City. However, ridership on the LIRR is 338,000 daily, triple the entire MBTA Commuter Rail system, and nearly all trains provide an easy, cross-platform transfer at Jamaica. New Jersey Transit runs most trains to Penn Station, but some to Hoboken, but again, Hoboken provides an easy transfer to Downtown via the PATH Tubes, and transfers can be made easily at Newark. Fairmount, on the other hand, has never had and will never have anywhere near the traffic required for such a system to work, nor is there a logical transfer point. It needs to have one terminal, and the only logical terminal—until and unless the North-South Rail Link is built—is at South Station.

Investment in Fairmount, as has been posited by this page in the past, should focus on two features (in addition to more frequent service, which should be a given). First, it should have all-door boarding and not require conductors to collect fares (this could be solved easily with proof-of-payment fares or by installing fare gates on a platform at South Station). Second, it should be converted to electric operation, to allow for faster travel times and less noise and pollution in the neighborhoods it serves. Either way, it should terminate at South Station. (What to do with Track 61? A connection from the Red Line at Andrew to the Seaport makes more sense.)

The promise of Fairmount is that it could provide a quick, frequent trip from Dorchester and Mattapan to Downtown Boston in half the time—or less—of the current bus-rail transfer along the route. The number of people who desire a trip to the Seaport is small. Even if employment there doubles, it will still be a drop in the bucket compared to Downtown, and all the jobs you can get to with an easy transfer to the rest of the subway system. I think Rep Collins and Sen Dorcena-Forry’s hearts are in the right place: they want Fairmount to provide better service to their community. But it should provide service to where there are more jobs and better connectivity: South Station.

Fairmount lessons from … Staten Island?

Set apart from the New York Subway system is the Staten Island Railway (SIR), which runs the length of Staten Island and connects to the Staten Island Ferry for the trip to Manhattan and beyond. While it operates somewhat-modified New York City subway equipment, it is part of the national railroad system, so the cars have meet FRA regulations and until 1997, fares were collected by on-board conductors. Since then, fare collection has been simplified and staffing reduced to a single operator.

Conductors make some sense on commuter rail systems: they have to raise and lower stair traps at stations with different platform levels and collect fares where trains pass through different zones. (Could zones be simplified on most US Commuter railroads? Yes, but that’s the topic of a different post.) But the SIR runs subway-style equipment at all-high-level platforms with one fare, so all the conductor was there for was to to collect the same fare from everyone. And unlike most subway lines in New York, nearly everyone on the train was traveling to one station: the Saint George terminal and the connection to Manhattan. So when the MTA came out with the Metrocard, the conductors disappeared, turnstiles and MetroCard machines appeared at Saint George, and passengers paid a fare upon entry and exit (similar to the MBTA’s exit fares when higher fares were charged for the Quincy extension). A few years later, after many passengers made the short walk to Tompkinsville, fare gates were added there, too.

But there was no need to put fare gates on the rest of the system. Most people use the line to access the ferry and get to Manhattan, and the cost of installing fare mechanisms at the other 20 stations on the line was far too high for the number of passengers using them, so travel between intermediate stops is free.

There aren’t many other systems that could use such a procedure: most either have multiple fare zones or multiple terminal stations (shared with other services, making faregates less feasible), or both, making it much harder to implement these sorts of efficiencies. But in Boston, the Fairmount Line meets both these criteria, and would be a good candidate for this sort of fare system.

Now, before we get too far in to the weeds, let’s posit that the Fairmount Line at some point gets more frequent service (the SIR runs every 15 minutes at rush hour and 30 minutes midday to match the ferry schedule, but the Fairmount Line should really run every 10 to 15 minutes), preferably from DMUs (or as this page has argued, EMUs). In the short term, four coaches and a diesel engine could be used for more frequent service, although doors might need to be automated. It wouldn’t have the look and feel of a subway, but it could be operated as much as possible as one (frequent service, all door boarding).

Most Commuter Rail trains operate with three crew members: an engineer and two conductors; at rush hours, there may be additional conductors. Their direct responsibilities don’t really extend beyond collecting fares and operating doors. These are important functions, especially for trains with 1000 passengers which run on lines which don’t have full-length high platforms and with multiple fare zones. But the Fairmount Line has neither. Tripling the current headways to 15 minutes at rush hours and 20 minutes at other times could be attained with the current level of staffing (you need more trains, but not more staff, and the marginal cost of running a train is half staffing costs; likely lower with EMUs). That doesn’t quite get you to subway levels of service, but it’s a lot better than the hourly service today. There may be FRA issues with removing personnel from the trains, but the FRA does grant waivers, and the SIR operates under FRA rules with one person train operation. Other than a low-level platform at Readville, union issues and entrenched bureaucracy, what would keep the T from doing the same with the Fairmount Line?

Most everyone would pay their fare. The easternmost platform at South Station—tracks 12 and 13—could be set aside for Fairmount passengers with Charlie Card gates at the end of the platform, and a couple of ticket machines on the inside for passengers arriving without fare. Charlie Cards could (probably) be set up to allow a free transfer to and from the Red Line. If South Station is expanded, a Fairmount Terminal could be built with a direct transfer to the Red Line within fare control through the station’s basement, although it’s unlikely that the never-used underground loop could be repurposed for rail service, it could serve as a pedestrian passageway.

Since the first station on the line at Newmarket is a relatively-unpleasant, two-mile walk from South Station, there would be no Tompkinsville issue. According to 2012 counts, more than 99.5% of trips on the Fairmount Line were to and from South Station. With more stations open since then and possible free rides, a few more people might use the train for inter-Dorchester travel. Even then, the cost of collecting fares would still far exceed the fares collected, and any such travelers would not be able to access the rest of the system without paying an additional fare.

Unfortunately, the Fairmount Line is an ugly stepchild of the already rather ugly MBTA Commuter Rail system. Without increased service, it seems destined to serve few riders; while it provides relatively fast travel it is so infrequent riders are usually better off taking a bus and transferring to the subway. But with a relatively small investment in linking the electrification already present at both ends of the route, and with some common-sense fare payment initiatives aping the SIR, it could act much more like subway line straight in to the core of the city, with easy connections to other subway lines and the airport. And in a disadvantaged community with poor transit, this would go a long way towards better job access and prospects for workers there.

Electrifying Fairmount would be cheaper than buying DMUs

 I spent a few days in Colorado for a wedding and (shocker) rode the transit system there quite a bit. Oh, I hiked and trail ran, too. I didn’t take a train trip, but did ride a variety of buses (including the spectacular N route up and down Boulder Canyon), but I did wander around Denver some, and was witness to the spectacular new Union Station project. It has a eight-track rail terminal (two pairs of three-track high-level platforms and two low-level platforms for long distance service) and a connected underground bus terminal which has access to nearby HOV lanes. And dozens of cranes erecting buildings around it.

The N bus goes up and down a 10% grade through
Boulder Canyon. It’s a beautiful ride, although it must
be one of the more difficult routes to drive. A friend said
that during a snowstorm drivers have asked passengers
to move to the back of the bus to increase traction.

Most impressive? The rail terminal is fully electrified. When Denver’s Commuter Rail lines begin service next year, they’ll be operated fully under the wire, with the same electrification (25kV 50 Hz AC) that Amtrak runs between Boston and New Haven. And they are planning to operate high quality service: some of the most frequent Commuter Rail in the country, with 15 minute headways all day on some lines, and never worse than 30 minutes between trains. Only a few lines in the country (in the New York area) can boast that kind of frequency.

This is not the typical newly-built Commuter Rail built in the US. That would be what you get in Minneapolis, Nashville, Dallas or Seattle: moderately-frequent service at rush hour superimposed on a freight railroad and little service at other times. Legacy systems tend to do better, but the MBTA’s service leans towards the latter, especially outside of rush hours, when most lines have service gaps as long as 2 hours (or in some cases, longer).

Denver’s Union Station terminal is particularly impressive.

There’s one MBTA commuter line in particular which could use more frequency: the Fairmount Line. Unlike most of the Commuter Rail lines, it doesn’t stretch far in to the suburbs, passing through town centers, park-and-rides, and marshes and swamps. It has no four-plus mile gaps between stations, some of which are parking lots far from where anyone lives, with few riders off-peak. Instead, it serves a dense part of Boston with stations every mile, or in some cases, even more closely spaced. It should be run like a subway—like Denver is planning—yet it runs about as inefficiently as possible: service only operates once per hour, and that service is operated with a push-pull engine-and-coaches set-up which is suited far better to service Fitchburg, Middleboro or Rockport.

The T’s solution? It was to purchase diesel multiple units (DMUs) until the governor shelved that proposal (and quite possibly rightfully so). One potential reason? The projected cost for 30 of the vehicles was $240 million, or $8 million per car. DMUs are relatively unproven in the stringently regulated US railroad environment (although they have more success in Europe) and the cost for such vehicles would be very, very high. That leaves aside the fact that DMUs are best used for low-volume, longer-distance services. Anywhere which has frequent service and closely-spaced stations is better served by electric service (as Denver decided). Yes, the up-front, in-the-ground infrastructure costs more, but the operation costs are much lower, to say nothing of noise and local pollution reduction. And with off-the-shelf rolling stock (which is much cheaper) and an electrification system partially in place, it winds up being much less expensive overall.

The Fairmount Line is the perfect candidate for electrification. It is perhaps the most perfect candidate of any diesel line in the US outside of Chicago and San Francisco (where planning is in place to electrify Caltrain). It is only 9 miles long, and the final mile in to the terminal is already electrified (this would be by far the most expensive piece to run wire, but it’s already there). It has, in those nine miles, eight stops, meaning that the much faster acceleration afforded by electric propulsion pays dividends in travel time savings. It serves a corridor which could easily support trains every 15 minutes (especially if they were better integrated in to the rest of the system), with high population densities and accessible stations. Parallel subway and bus lines are over capacity, and it serves a poorly-served region which currently relies on slow-moving, crowded buses. And best of all, both ends of the line are adjacent to existing electrification—the northernmost mile is already under the wire!—so it would not need to be built as a stand-alone system, but would be integrated in to the existing electrification.

Even with initial infrastructure costs, it’s quite possible that
EMU service on the Fairmount Line would be no more 
expensive than DMUs. The significant upside, however, in 
procuring off-the-shelf technology, 
is a lower chance of cost overruns.

Then there are the costs. Electrifying existing rail is not very expensive: generally in the range of $5 to $10 million per mile (Caltrain’s costs, which are built to also allow high speed rail to operate, are $18 million per mile). Since this wouldn’t be built from scratch—since it can tie in to existing electrification—costs should be in the low part of this range. Let’s say it does cost $10 million per mile for the 8 as-yet unelectrified miles: that’s an initial cost of $80 million.

But then, instead of buying expensive, unproven DMUs, you can buy off-the-shelf electric multiple units, or EMUs. How off the shelf? Philadelphia and Denver both are running Silverliner V cars; in Denver’s case, on the same electrification system we have in Boston. On the basis of power and clearances, it is quite possible you could roll a Denver EMU in to South Station and run it up and down the Providence Line tomorrow (signal issues notwithstanding). Philadelphia placed an order for 120 cars for $274 million: a per-unit cost of $2.28 million. Even if Boston doesn’t get quite the same volume discount, 30 EMU units would, at $3 million each (the approximate cost of Denver’s units), cost $90 million. (2016 update: More-reliable M8s Connecticut just bought cost in the $4 million range, but include both third rail shoes and pantographs, which likely inflate cost somewhat.) Even with the initial investment in electrification, the total cost would be $170 million, 30% cheaper than that many DMUs! Even if a maintenance shop were needed (and Readville, adjacent to the end of the line, would be well situated for it), it would still come out cheaper. In the short term, heavy maintenance could be contracted out to MetroNorth’s New Haven shops, and cars towed down the line as need be. Even at $4 million—the average cost of DMUs produced today for other systems—the EMUs plus the wire would come out even.

An EMU is basically an oversized subway car: it’s built for faster speeds and is heavier since it is in the FRA’s domain, but otherwise has traction motors, a pantograph and a drivetrain. So it should cost about the same as (or a bit more than) a subway car, and indeed it does. The MBTA’s procurement of Red and Orange line cars comes in at about $2 million per car, so $3 million is in the ballpark. M8s or Silverliners cost more, since they are larger and faster vehicles, but not that much more, because rather than having to be designed for the specific specifications of Boston’s subway lines, they can be built to exactly the same specs as Denver or Philadelphia (although maybe we don’t want those) and shipped out the door.

An EMU can accelerate much more quickly, spend more time
at top speed, and save several minutes of operation time each trip.

Then there are the benefits. First, electric trains are quieter. A lot quieter. Second, they don’t need to be kept running overnight to keep from freezing up. Third, they have far less local particulate pollution (and if renewables are used for power, they are much cleaner overall), important for the environmental justice communities the line serves. And finally, they accelerate faster. A lot faster. The rail cars being used in Sonoma and Marin counties are spec’ed for 1.6 miles per hour per second (mphps) to start, and just 0.7 mphps at 30 mph. (This is much like an MBTA diesel-hauled train.) The Silverliners? 3 mphps to 50 mph, and then declining to 2 mphps at 100 mph. In other words: to reach 30 mph, it takes a DMU 31 seconds; to reach 50 mph, it takes 1:15. A Silverliner can reach those same speeds in 13 and 24 seconds, respectively.

This means faster trip times, and operational savings. While a DMU train can cover the distance between Newmarket and Readville in 15 minutes, an EMU can cover that same distance in 12.5 minutes, even with the same top speed limit of 60 mph. With faster acceleration, the EMU spends a lot more time at that top speed, rather than chugging its way towards it (and with dynamic braking, it can also brake more quickly and efficiently). These time savings can either be put in to more frequent service, or more recovery time and fewer delays.

EMUs could also be used on the Providence Line, where the higher speeds—SEPTA’s Silverliners operate at 100 mph on the Northeast Corridor, the M8s have a similar top speed—would allow shorter, speedier and more reliable trips between Providence and Boston. Here’s a video of a Silverliner on the Northeast Corridor north of Philadelphia. It’s not accelerating at full bore, but still makes it to 50 mph within about 25 seconds and 80 mph within a minute (note the hard-to-see phone speedometer in the lower left). Thus in two minutes, from a dead stop, it covers 2.5 miles with an average speed of 75 mph. Electrified service on the Providence line would reduce run times by 25 to 33%—15 to 20 minutes—faster between Boston and Providence (depending on stopping patterns), dramatically reducing operating costs and allowing more service to run in the corridor, and attracting more passengers to boot.

In the longer run, it would start the T down the worthy path of electrification. In addition to Fairmount, 13 additional miles of wire would fully electrify the Stoughton and Needham lines, both of which use the already-electrified Northeast Corridor for part of their runs. Franklin would be a next best bet; a third of the 32 mile line already operates under the wire. Thus, for 42 miles of overhead—an investment in the range $200 to $400 million (plus another $50 to $100 for high level platforms)—the T could do away with inefficient diesel service on four of its commuter rail lines, which would serve as a springboard towards the future electrification of the rest of the system. The cost savings alone would likely tally to millions of dollars per year.

It is silly to run diesel service under a wire. While MARC, in Maryland, is moving away from electrics, it is really beyond explanation. Part of it may be that they are charged high rates for electricity by Amtrak, which owns the wire and track. The T, which owns the tracks, has a better negotiating position with Amtrak for electricity prices. But MARC is bucking the trend: most non-electric commuter railroads are moving towards overhead power. All-electric SEPTA is buying new electric motors as well as EMUs, Denver has started all-electric, Caltrain is moving towards electric operation, and Toronto is as well for its sprawling system.

Running Fairmount under a wire would make more sense than any of these systems. With DMUs delayed, the MBTA—which has long since had a distinct allergy to modern equipment in general and electrification in particular—needs to take a good, hard look at its cost and operational benefits of electric propulsion. It makes sense not only from an operational, pollution and environmental justice standpoint, but from a financial standpoint as well. Electric operation has long been anathema for the MBTA. But it makes operational and financial sense. It should be seriously considered.