Monorail vs Hyperloop

There’s a lot of hubbub going on about Elon Musk’s, uh, fanciful “hyperloop” idea coming out of California. There’s a lot of fawning in the press. There are people who know things writing long missives taking down most every bit of the lack of details in the report.

In any case, I think there’s another angle here. Basically, the fact that the Simpsons predicted this 20 years ago. And not only did they predict it, but there are some uncanny parallels. Of course, I refer to the Marge vs. the Monorail which first aired in 1993. Not only is it surprisingly prescient, but hilarious, too, making several best-of lists of Simpsons episodes, and being called “the best sitcom episode ever.” (And it was written by the inimitable Conan O’Brien, who would go on to some other fame. You can watch via a sketchy link here.)

Basically, the premise is that serial villain and nuclear power plant owner C. Montgomery Burns is caught illegally disposing of nuclear waste, and pays the town $3 million in fines. The town then has a meeting to decide what to do with it. From here on in, I’ll parallel it with the LA-San Francisco transportation corridor:

Simpsons: after several proposals and ideas, Marge leads the outcry to repair the town’s main street.
California: after several fits and starts, the state passes bonding for high speed rail.

Simpsons: Huckster Lyle Lanley, after the town has approved the street idea, shows up with a plan for a monorail, leads the town in song, and the Main Street (proven transportation improvements) is replaced with a mock-up model of the monorail.
California: After the state has all but started construction on high speed rail, Elon Musk shows up with a sketch of an idea for a hyperloop, which will be faster, cheaper and better than the high speed rail.

Simpsons: The townsfolk ask Lanley questions with the following exchanges:

I hear those things are awfully loud—It glides as softly as a cloud.
Is there a chance the track could bend?—Not on your life, my Hindu friend.
What about us braindead slobs?—You’ll be given cushy jobs!

California: Questions about where the system runs, its technical merits and such are not addressed.

Simpsons: Monorail runs on solar power.
California: Hyperloop runs on … solar power.

Simpsons: Lanley has sold monorails to Brockway, Ogdenville and North Haverbrook
California: Musk hasn’t sold a hyperloop to … anyone.

It turns out that Lanley builds shoddy products, and that in the end the monorail winds up running at warp speed (slowing temporarily during a solar eclipse) before again running out of control, only stopping when Homer uses an M attached to a lasso to hook a giant doughnut (eliciting the line “Doughnuts, is there anything they can’t do?”).

So basically, in both cases, the citizens have a pressing transportation issue and appropriate money to fix it. In both cases, they make a choice based on proven technology only to have it upended by an unproven idea (perhaps more nefarious in the case of the Simpsons). Both systems run on solar power, but at least with the monorail there were proven (and proven bad) systems Marge could visit to disprove its worth. If the case of the hyperloop, if it somehow upends the high speed rail project and succeeds, I’ll be glad, if surprised. But I’d more likely expect a monorail.

2.7 million kilowatt hours is a lot of power, but …

There’s a good* article on California’s high speed rail plans in the LA Times. I’m not going to focus on the questions of how to engineer a high speed rail system through mountain passes (it’s interesting, though), but look at one number which is put forth in the article:

When completed and fully operational, the bullet train will need an estimated 2.7 million kilowatt hours of electricity each day — about a quarter of Hoover Dam’s average daily output.

2.7 million kilowatt hours! That’s a lot. That’s … 2.7 gigawatt hours! A big scary number! A quarter of the Hoover Dam! A number worthy of exclamation points! What a power-hungry system this will be. Why not shelve it, and have everyone drive and fly between San Francisco and LA?

Because as far as transportation goes, this is pretty darned efficient. Transportation uses a lot of power, and high speed rail is one of the more efficient ways to move people from one point to another. How much power does a car use? One gallon of gas has the equivalent of about 34 kWh. Now, let’s assume that the average vehicle, being driven at highway speeds, gets, oh, I’ll pick a number out of the air: 34 miles per gallon. This yields the very convenient measure of 1 kWh per mile. If the average vehicle has two occupants (a reasonable estimate for long-distance drives), it yields 0.5 kWh per mile. (Airplanes have a similar fuel efficiency.)

It’s about 400 miles from San Francisco to Los Angeles. So the average person will use 200 kWh for that trip. 2,700,000 (2.7 GWh) divided by 200 yields—13,500. 2.7 million kWh is enough power to transport, using current technologies, 13,500 people each day between Los Angeles and California, or about 5 million per year.

The current HSR plans call for 1000-passenger trains (approximately—this is what is run in many other HSR systems) running every 9 minutes between San Francisco and Los Angeles at peak hours (7-10 a.m., 4-7 p.m.). That yields a peak-hour capacity of about 6.5 trains in each direction, or 13,000 passengers.

In other words, 2.7 million kWh would be enough to power the entire California High Speed Rail system—or enough to get one hour’s worth of high speed rail passengers to make the same trip by car or plane. To put it another way, 2.7 million kWh in it’s equivalent of gasoline will move about 5 million people between LA and San Francisco. It will move 20 to 30 million Californians along the same route by high speed rail—six times the efficiency!—with power left over for another 30-50 million shorter, interregional trips.

And this doesn’t address where the power comes from. For vehicles and air travel, it is from fossil fuel. For electricity, it can come from renewable sources in a state blessed with hydro, wind and solar. Right now, 20% of California’s power is from renewable sources; by 2020 the mandate is for 33%. With high speed rail drawing power from the grid, some of it’s power will probably come from the Hoover Dam.

( * if slightly concern-trolling—yes, crossing faults is a worry but it’s not like Japan’s Shinkansen runs through a seismically-inactive region)

Does high speed rail cost more than highways?

There’s been some discussion over at the California High Speed Rail Blog about the cost of the system. Basically, a Freakonomics guest blogger threw around the figure of $80b for the system, which is considerably higher than the forecasted $40b. No one really knows how much the high speed rail system will cost, but the numbers everyone quotes need to be contextualized. In other words, much did the Interstate Highway System cost? Per person, and adjusted for inflation? Was it considerably more than high speed rail?

According to the wikipedia site about Intersates, the highway system cost $425b (inflation-adjusted) to build over a period of 35 years. In 1950, the population of the country was 150m, and in 1960 it was 180m. So, in 2007 dollars, the Interstate system cost about $2500 per person alive at its inception (425b/165m, the approximate population when the highway system was funded, in 1956) to build. Per year, it cost about $75 per person.

California has a population of approximately 37m, and we can assume that the final bill for high speed rail would come in somewhere in this $40b to $80b range. Running these numbers, California’s HSR system would cost about $1100 to $2200 per person, spread over a period of about twenty years. Per person, it would cost less than the Interstate system—perhaps considerably less. Per year, it would be between $55 and $110—quite comparable to the Interstate system.

There is one minor difference between the Interstates and High Speed Rail. Say what you want about CAHSR’s business plan, but as far as I know, the Interstate Highway System never had a business plan which showed the system making a profit.