Will Buffet electrify the BNSF? Part III—operation advantages of electric power

(part 3 in a series)

Why use electricity? Rail transport is already very efficient (you’ve seen the ads)—436 ton-miles per gallon. (FWIW, the average car gets about 40 ton-miles per gallon, trucks do somewhat better.) So, that’s good, right? Yes. It’s good. But, in addition to easing operation when built, freight rail could triple that number. One ton across the country, on two gallons of gas.

Railroads are already efficient—significantly more efficient than their chief competition: trucks. Pipelines and barge traffic are also quite efficient but each have significant limitations. Pipelines are expensive to construct and can only carry liquids. Barges are cheap to operate and energy efficient (especially going downstream, where they use the flow of a river to their advantage) but are tied to navigable rivers and stream flows, which, when low or icy, can preclude their use. In addition, barges have a very limited top speed, and also need long periods of time to navigate locks when making any change in elevation. Thus, barges are only useful for bulk materials which are not time-sensitive. To receive or deliver goods anywhere which is not on the barge network requires time-consumptive and expensive break-in-bulk procedures, which, when combined with the restrictiveness of the navigable waterway network, further decreases their utility.

So, highways and railroads handle the bulk of freight in the United States. Trucks have advantages in flexibility (they can deliver almost anywhere) and, generally, speed. Railroads have advantages in fuel consumption, labor costs, and maximum carrying capacity (by unit; the size of the largest rail car is significantly more than a trailer). While labor costs and maximum capacity would be relatively unaffected by electrification, fuel costs would decrease further. Using diesel power, railroads are already between 1.5 and 10 times more efficient than trucks. A factor of three or four is probably a conservative estimate. Railroads and trucks use the same fuel, so the efficiencies are not realized there. They appear in both economies of scale of railroads larger engines, wind resistance (in effect, each rail car is drafting the one behind it) and, more importantly, the effect of rolling resistance. Rubber tires on asphalt roads have significantly more friction than steel wheels on steel rails.

Even with these efficiencies, railroads are generally cheaper than trucking because of labor costs. Each truck requires a driver, and a train, which can carry the equivalent of 280 trucks with a crew of two. With current energy prices, labor is a greater advantage for railroads than fuel. But it doesn’t mean that diesel power is operationally preferable to electricity. Once the initial infrastructure (catenary, transmission and substations) is built, electric rail is operationally superior for several reasons including the simplicity of electric motors, the lack of a need to ship fuel, acceleration and operating speeds, and, finally, the ability to use regenerative breaking on downhills.

The first reason is that electric motors (technically, electric train engines are “motors”) are simple. As discussed in part II of this series, many of the electric motors the Milwaukee Road used were fifty years old and worked fine when the railroad ripped out electrification. Diesel engines last rather well, too, but aren’t in the same league. With fewer moving parts, after the initial investment, a railroad could expect to have to pay very little for new motors for some time.

A second advantage is where the power for engines comes from. With diesel engines, there is both the need to carry fuel on-board, and to frequently refuel. The weight of the fuel on the train itself is quite minor, considering a train might weight several thousand tons. However, the transport of the fuel requires resources, either pipelines or delivery by the railroad, which uses capacity that could be used for other shipments. In addition, fueling the tanks takes time, during which the engines could otherwise be in service. With electricity delivered from overhead wires, there’s really no reason, except for crew changes, that a motor would ever have to stop.

Furthermore, when diesels do have to stop, they can’t be turned off and back on at the drop of a hat. Diesel requires warm temperatures to operate, and to keep engines warm, they either have to be plugged in or kept running, whether they are hauling anything or not. Electricity, on the other hand, is as easy as flipping a switch. In the mountains and along the northern transcontinental route, it gets mighty chilly.

Electric motors benefit from better acceleration and higher operating speeds. Acceleration is very important for passenger rail, especially when there is not much distance between stops (which is why subways run on electricity) but not as important for freight rail. However, having a top speed faster than competing services would allow freight rail to be time-competitive with trucking.

Getting rid of the on-board power supply also gives the ability to reduce the dependence on one fuel type, which, in the case of rail, is oil. Diesel-electrics use on-board power plants, which are only 30 or 40 percent efficient. Some electricity-generating technologies are more efficient. (HowStuffWorks has a nice article on diesel locomotives.) The cynic’s view is that railroads will turn to coal in order to get their power, and, while this may be true (they’re the ones hauling the coal, after all), there are certainly other options. The Milwaukee Road ran mainly on hyrdo power. As we’ll explore later, the BNSF runs through wind- and solar-heavy regions. Finally, since there is some power loss, having major, centralized coal plants might not make as much sense as power sources along the route.

Finally, a diesel engine runs whether the train is accelerating or not. If the train is decelerating, the engine can, in a sense, be run backwards to slow it down. (Your car runs very similarly, albeit on a smaller scale.) This is called “dynamic braking.” Of course, physics dictates that this energy has to go somewhere, and it does: it is converted to heat and blown through huge vents on the top of the engine. This is a major waste of energy.

Electric engines also have the ability to use the momentum of the train to slow it down, but instead of dissipating the energy as heat, they throw it right back in to the wire above. This is “regenerative braking.” (The Prius does the same type of thing, but can only store energy in a battery.) With wires above, there is little limit to the amount of energy which can be put in to the system. If another train on an adjacent track is climbing the hill, a downhill train can transfer much of its power across to it; if not, the power can be fed back in to the grid. Since every transcontinental line climbs and descends several thousand feet through the Rockies and coastal ranges, there is the potential to save huge amounts of power.

I. We’ve discussed how being part of a larger organization like Berkshire Hathaway may allow the BNSF to spend more freely on capital improvements in this section.
II. We’ll then look at a history of freight rail electrification, including the sad tale of the Milwaukee Road and some freight rail electrification abroad.
III. We’ll look at some of the operational advantages of electric power, and
IV. Some of the economic advantages, in the long run, of electric power generation, and how the whole system would be built.
V. From an environmental standpoint, we’ll look in to how electricity can be generated on-route, and whether there are options beyond coal (such as wind and solar), and
VI. How this may mesh with the construction of a smart grid.
VII. Finally, we’ll see if freight rail electrification may have any benefits for passenger rail, on the BNSF routes and other main lines.

Will Buffet electrify the BNSF: Part II—a short history of electrified freight rail

(part 2 in a series)

Electrifying a railroad—at $5m a track mile or more—may seem like a bit of folly. Sure, there are light rail lines, and subways, and something over in Europe. But it is at all feasible? Has it ever been done? Who’s ever electrified a freight rail line? Quite a few organizations, it turns out.

Many of Europe’s freight lines are electrified, but rail market share there is quite low (in the 8-10% range), so it’s not a great comparison (there are several reasons for this, including short distances between industrial centers, steep mountain passes which are only now being crossed with straight, flat rail tunnels. In addition, less power in Europe comes from coal (France, for instance, is mostly nuclear) so there is less need to transport that commodity. Finally, much of the investment in Europe has been in fast, efficient passenger rail, which accounts for most of the traffic. So Europe is electrified, but it doesn’t have several long lines which have 75 100-car long freight trains per day under the wire. (In the United States, freight rail mode share is 36.2% overall, and 56% of the rail-truck breakdown.)

Let’s move east. Russia. The Trans-Siberian Railroad. Built before the first World War, it has recently been fully-electrified (full double-tracking is a work in progress). It’s nearly 10,000 kilometers long—the distance across the United States … and back. It is heavily used for freight, but not as heavily as it could be, as gauge breaks at the Chinese and European borders necessitate two time-consuming break-in-bulk-type points in a journey from the far east to Asia. According to press from the time of full electrification (2002) the goal was a more efficient system: one that could compete with shipping around Africa or through the Suez, with longer and more efficient trains. It’s also worth noting that the Trans-Siberia goes through, well, Siberia, so it pretty much experiences anything mother nature can throw at it.

Finally, it’s worth examining electric railroads in the United States. There are three main categories: electrification in the east, short lines and interurbans, and the Milwaukee Road. The first two are relatively small potatoes. Several east coast railroads operated electrics, but these were mainly for commuter services or where steam engines were disallowed (underground terminals). The Penn Central and others had some electric freight, but it was mainly to take advantage of the electrified mainline from New York to Washington. Many interurbans hauled freight along with passengers, but switched to diesel when passenger service ended (most were abandoned outright). The Iowa Traction railroad, a short line in Iowa, operates regular electric freight, albeit over a short distance. And several coal mine operations have operated electric railroads, probably due to the large loads and readily available power supply.

There was one electric operation, however, which was not built mainly for passengers. The Chicago, Milwaukee, Saint Paul & Pacific, better known as The Milwaukee Road operated several hundred miles of freight railroad through the mountains in the western United States. The original line went from Chicago to Minneapolis and then west in to the corn fields, but in the early 1900s, the railroad planned and built a transcontinental link in order to remain competitive with other lines. The line was shorter than other transcon routes, and had decent grades, but, since it was built last, it bypassed most of the population centers along the route (not that it is densely populated) and was suited mainly to long-distance shipping. And without land grants, the road took on quite a bit of debt in order to build the line west.

Perhaps the reason that the land was sparsely populated was the cold. While the Hill Lines (the Northern Pacific and Great Northern) operated in similar conditions, the Milwaukee found the operation of steam locomotives to be difficult in winter conditions. In addition, they saw small-scale successes with electrification, including the mainline Cascade Tunnel and the Butte, Anaconda and Pacific railroad, which carried mainly ore. With ample hydro power in the mountains and available copper, the road decided to electrify the portion in the Rockies. The Cascades came next. By 1920, 656 miles of line was under the wire. It wasn’t constructed to the high speed lines of the Pennsylvania, but provided ample power for freight operations, and passenger speeds of up to 70 mph. (In a publicity stunt, the railroad staged a tug-of-war between an electric motor and two steam engines at full throttle. The Electric motor won.)

The Milwaukee had some iconic electric motors; some of the most powerful electric motors built to that time, clocking in at or above 5000 hp in some cases. There were the Boxcabs, which looked like box cars with windows, pantographs and a bunch of wheels. There were the distinctive bi-polars, which were designed for passenger service and served in that capacity for nearly four decades without significant maintenance. The best-named were the “Little Joes.” These engines were built in the late 1940s for Russian Railroads, but after the start of the cold war, were surplus as the US would not allow them to be sold. The Milwaukee wound up with a dozen of them, and they were referred to as “Little Joe Stalin’s locomotives,” shortened to “Little Joes.”

The cost of electrification and the extension to the Pacific threw the company in to bankruptcy, and the depression didn’t help. The showpiece of the line in the 1930s was the 100 mph-plus Hiawatha from Chicago to Minneapolis, one of three lines competing on the route. The line tried to merge with the Chicago and Northwestern in the 1960s but was denied, and the merger of the Hill Lines and the Burlington Route created a behemoth competitor in its territory in 1970. But the end of the Milwaukee came mostly from mismanagement, and removing electrification was a contributing factor.

The first issue was operational. World War One and the ensuing economic downturn after it put the kibosh on the plans to electrify the gap between the two electric divisions, and the company never really had the money to do so. Thus, the railroad had two separate divisions with coal, and then diesel, power, and two separate divisions with electric power, decreasing inefficiency. Diesels came in the 1950s and were significantly more efficient than steam (especially with diesel fuel easier to haul from the east for power), but with the capital investment in place and new motors, the line kept the electric divisions going. However, the railroad wanted to merge in the 1960s, and in order to appear profitable, deferred maintenance considerably.

After the Burlington Northern was formed, the Milwaukee found itself unable to merge with the C&NW, the whose stock had declined considerably. The merger plan, which had taken most of the last decade, had failed, and the board inexplicably rejected an offer to buy the railroad outright (wanting to merge with a larger line) despite the operational efficiencies which would ensue.

However, due to the size of the BN, it was required to open more markets to competition, and traffic on the Milwaukee grew rather handsomely. The problem was that the railroad didn’t really have the capacity for the growth. The track bed was, in many cases, beginning to fail, and car shortages brought on by financing schemes scared off some of the new business. The line wanted to improve its books and looked at some of the assets it had, including a copper wire running for 656 miles. It was worth about $10m. The railroad could finance diesel engines, sell off the copper, and come away, in the short term, with their balance sheets in good shape. Oil was cheap in 1971, so the operational efficiencies of electrics were not dramatic, especially since the old parts for the motors were becoming harder to find. Of course, for the same $39m it cost to finance these diesels, the remaining gap could have been electrified and the diesels there transferred east. This would have been far better in the long run, but less so in the very short term.

This decision was justified by saying that the infrastructure had passed the end of its useful lifespan, although this was, generally, not the case. The supporting poles were wearing out. The caternary wasn’t, and the engines had plenty of life left (electric motors tend to last a very long time). The power sources needed some updating, but with mostly-free hydroelectricity, they could provide power for time to come. The track was in worsening shape, but that had nothing to do with the energy source for the trains operating. The Milwaukee was a bit desperate but more shortsighted and narrow-minded, and chose to abandon the electrification.

The timing could not have been worse. Copper prices dropped, and the railroad only received $5m from the scrap. At the same time, oil prices quadrupled, and suddenly electricity would have been significantly cheaper. The track condition hobbled the line more, and travel times slowed considerably. By 1977, the line filed for bankruptcy, and asked the Interstate Commerce Commission to abandon the line. They did so in 1980.

Had the chips fallen slightly differently (had there been slightly more foresight in the management) the Milwaukee could have linked its electrification in to a nearly 900-mile long system from Seattle to Montana. With slightly better maintenance, the line could have thrived during the oil crises, with dramatic operational advantages based on electricity, and may have considered spreading the wire east. But they didn’t and instead the railroad is now abandoned, the only transcontinental line to be completely abandoned in the history of American railroads. Since then, oil prices decreased significantly, and no one has built a significant electric freight line (the only major electrification has been the Northeast Corridor from New Haven to Boston, built almost exclusively for passenger use).

Of course, diesel hit $5 a gallon last year, and may only go higher. In the 1970s, electrification would have had a four-to-ten year payback time for the Milwaukee Road. It’s a long-range investment—one which might be doable with some foresight and an ownership which looks far down the road. Or track, as it may be.

A few pages about the history of the Milwaukee:
A report from 1973; the company was bankrupt four years later
More about electrification
Some information about the end of the electrification

This series:

I. We’ve discussed how being part of a larger organization like Berkshire Hathaway may allow the BNSF to spend more freely on capital improvements in this section.
II. We’ll then look at a history of freight rail electrification, including the sad tale of the Milwaukee Road (who de-electrified with about the worst timing possible, ever) and some freight rail electrification abroad.
III. We’ll look at some of the operational advantages of electric power, and
IV. Some of the economic advantages, in the long run, of electric power generation, and how the whole system would be built.
V. From an environmental standpoint, we’ll look in to how electricity can be generated on-route, and whether there are options beyond coal (such as wind and solar), and
VI. How this may mesh with the construction of a smart grid.
VII. Finally, we’ll see if freight rail electrification may have any benefits for passenger rail, on the BNSF routes and other main lines.

Will Buffet electrify the BNSF? Part I

(part 1 in a series)

So, the Oracle of Omaha, the esteemed Warren Buffett, bought the Burlington Northern Santa Fe Railroad (BNSF). He’s given several reasons why he made the deal (from liking to bet on the future of the American economy to not having a train set as a boy but there is probably no singular reason other than the fact that he thought the BNSF was a well-run corporation which would give solid, if not stellar, returns for the long term.

And he’s probably right. Left for dead in the 1970s in an era of disinvestment and mismanagement (when railroads like the Milwaukee Road abandoned transcontinental routes even as they were likely making money; we’ll get to the the Milwaukee Road later), and with trucks taking larger shares of the marketplace, freight railroads have come roaring back in the last 30 years. Efficiencies have improved, some branch lines have been jettisoned (in order to focus on the steadier, long-haul traffic) and deregulation allowed for more profitability. And while Conrail was formed on the east coast in 1976 out of several bankrupt railroads, it’s since been reprivatized, and the US is the only major country which has not nationalized its railroads.

Energy also comes in to the picture. The environmental skeptics say that Buffet is betting on coal having an increasing role in the American economy—and freight rail is the only way to move coal. (The New Yorker had a great twopart article about coal transport a few years back. (It’s firewalled, though.) But, coal originates in the Powder River Basin in Wyoming, which is not near anything, and has to be shipped east (generally), and trains are the only way to feasibly do this. The other side of the coin is that Buffet may be betting on higher oil prices, which make freight rail even more economical than highway trucking. And that would likely be good for the environment.

It’s pretty likely that Buffet made a good, long-term investment. The question is how much he will invest in the company. Like most publicly-traded firms, the BNSF had quarterly reports and a board of directors and, even though they are nearing completion of a double-tracking of their Southern Transcon (the old ATSF route of the SuperChief and the freight hotshot Super C which was scheduled from LA to Chicago in 40 hours), such restrictions likely wouldn’t have resulted in significantly higher capital outlays. Now, however, with Buffet aboard, there’s a chance they might take a bigger capital bite: electrification.

With electrification, it turns out that there is much more to it than meets the eye. I was originally going to write one post here but started taking notes and it became unwieldy. So, I’ll break it down in to the following mini-posts (some of which might not be that mini) and link them each as I post them:

I. We’ve discussed how being part of a larger organization like Berkshire Hathaway may allow the BNSF to spend more freely on capital improvements in this section.
II. We’ll then look at a history of freight rail electrification, including the sad tale of the Milwaukee Road (who de-electrified with about the worst timing possible, ever) and some freight rail electrification abroad.
III. We’ll look at some of the operational advantages of electric power, and
IV. Some of the economic advantages, in the long run, of electric power generation, and how the whole system would be built.
V. From an environmental standpoint, we’ll look in to how electricity can be generated on-route, and whether there are options beyond coal (such as wind and solar), and
VI. How this may mesh with the construction of a smart grid.
VII. Finally, we’ll see if freight rail electrification may have any benefits for passenger rail, on the BNSF routes and other main lines.

Will we answer the question of whether Buffet should electrify freight rail be answered? Of course not. But it is an interesting question to ponder.